Embeddings of maximum packings in triple systems

Renwang Sua, Hung-Lin Fub, Hao Shena,*

aDepartment of Mathematics, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
bDepartment of Applied Mathematics, National Chiao-Tung University, Hsin-Chu, Taiwan

Received 14 November 2002; received in revised form 14 March 2003; accepted 21 November 2003

Dedicated to Curt Lindner on the occasion of his 65th birthday.

Abstract

Let MPT\((v;\lambda)\) denote a maximum packing of triples of order \(v\) with index \(\lambda\) and TS\((u;\lambda)\) denote a triple system of order \(u\) with index \(\lambda\). For \(\lambda \geq 1\) and \(v \geq 6\), it is proved in this paper that the necessary and sufficient conditions for the embedding of an MPT\((v;\lambda)\) in a TS\((u;\lambda)\) are \(\lambda(u-1) \equiv 0 \pmod{2}\), \(\lambda u(u-1) \equiv 0 \pmod{6}\) and \(u \geq 2v+1\).

Keywords: Maximum packing; Difference triple; Embedding

1. Introduction

Let \(V\) be a \(v\)-set, \(B\) a collection of 3-subsets (called blocks or triples) of \(V\). A pair \((V,B)\) is called a partial triple system of order \(v\) with index \(\lambda\) and denoted by PTS\((v;\lambda)\) if each 2-subset of \(V\) is contained in at most \(\lambda\) triples.

Let \((V,B)\) be a partial triple system of order \(v\) and index \(\lambda\). \((V,B)\) is called a maximum partial triple system if \(|B| \geq |C|\) for any partial triple system PTS\((v;\lambda)\) \((V,C)\). A maximum partial triple system of order \(v\) and index \(\lambda\) is also called a maximum packing of triples (or simply a maximum packing) of order \(v\) with index \(\lambda\) and denoted by MPT\((v;\lambda)\).

Let \((V,B)\) be an MPT\((v,\lambda)\), the leave of \((V,B)\), denoted by \(L(v,\lambda)\), is a multigraph \((V,E)\) where an edge \(\{x,y\}\in E\) with multiplicity \(m\) if and only if the corresponding 2-subset \(\{x,y\}\) is contained in exactly \(\lambda-m\) triples of \(B\). It is well-known (see, e.g. [2]) that the leave of an MPT\((v,\lambda)\) is empty if and only if \(\lambda(v-1) \equiv 0 \pmod{2}\) and \(\lambda v(v-1) \equiv 0 \pmod{6}\). In this case, the MPT\((v,\lambda)\) is called a triple system and denoted by TS\((v,\lambda)\). For fixed \(\lambda\), if there exists a TS\((v,\lambda)\), then \(v\) is called \(\lambda\)-admissible.

For \(v \geq 6\), by Mendelsohn et al. [11], the only graphs which can be leaves of an MPT\((v,\lambda)\) are shown in Table 1 (where \(v\) and \(\lambda\) are reduced modulo 6) with the following abbreviations:

\begin{tabular}{ll}
1F & a matching on \(v\) vertices \\
1FY & a matching on \(v-4\) vertices and a tree on 4 vertices with one vertex of degree 3 \\
\end{tabular}

Graphs of odd degrees

1F

1FY
Table 1
Leaves of maximum packings

<table>
<thead>
<tr>
<th>(\lambda) (v)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>(1F)</td>
<td>(\emptyset)</td>
<td>(1F)</td>
<td>(\emptyset)</td>
<td>(1FY)</td>
<td>(E_4)</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>3</td>
<td>(1F)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(06)</td>
<td>(\emptyset)</td>
<td>(1FY)</td>
</tr>
<tr>
<td>4</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(E_4)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(E_4)</td>
</tr>
<tr>
<td>5</td>
<td>(1F)</td>
<td>(\emptyset)</td>
<td>(1FY)</td>
<td>(\emptyset)</td>
<td>(1FY)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

06(a) \(1FH \) a matching on \(v - 6 \) vertices and a graph induced by AB, BC, BD, DF, DG
(b) \(1F_3 \) a matching on \(v - 6 \) vertices and a tree on 6 vertices with one vertex of degree 5
(c) \(1FY \) a matching on \(v - 8 \) vertices and two vertex-disjoint trees each on 4 vertices with one vertex of degree 3
(d) \(1F_3 \) a matching on \(v - 2 \) vertices and a triple edge AB, AB, AB
(e) \(1F_{-0-} \) a matching on \(v - 4 \) vertices and a graph induced by AB, BC, BC, CD

Graphs of even degrees

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>a double edge AB, AB</td>
<td></td>
</tr>
<tr>
<td>(E_4)</td>
<td>(C_4)</td>
<td>a 4-cycle</td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>(4)</td>
<td>(2^2)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>a quadruple edge AB, AB, AB, AB</td>
<td>2 double edges AB, AB, CD, CD</td>
<td>AB, AB, BC, BC</td>
</tr>
</tbody>
</table>

Now let \((X,A) \) be a partial triple system. \((X,A) \) is said to be embedded in a partial triple system \((Y,B) \) provided that \(X \subseteq Y \) and \(A \subseteq B \). We also say that \((X,A) \) is a subsystem of \((Y,B) \). The embedding problem is one of the fundamental problems in design theory. For the embeddings of triple systems, we have the following result:

Theorem 1.1 (Doyen and Wilson [5], Stern [15]). Let \(u, v \) be \(\lambda \)-admissible and \(v \geq 3 \). Then a TS\((v,\lambda)\) can be embedded in a TS\((u,\lambda)\) if and only if \(u \geq 2v + 1 \).

Over the last 30 years much effort has been focussed on proving a similar theorem for embedding any PTS\((v,\lambda)\) in a TS\((u,\lambda)\). The best results to date are the following two theorems:

Theorem 1.2 (Rodger and Stubbs [13]). Let \(u \) be odd \(\lambda \)-admissible. Then a PTS\((v,\lambda)\) can be embedded in a TS\((u,\lambda)\) if \(u \geq 4v + 1 \).

Theorem 1.3 (Hilton and Rodger [9]). Let \(u \) be \(\lambda \)-admissible and \(4 \mid \lambda \). Then a PTS\((v,\lambda)\) can be embedded in a TS\((u,\lambda)\) if \(u \geq 2v + 1 \).

The embedding problem for maximum packings has been studied extensively [6,7,10]. For \(\lambda = 1 \), this embedding problem has been completely solved.

Theorem 1.4 (Mendelsohn and Rosa [10]; Hartman et al. [8]; Hartman [7]; Fu et al. [6]). Let \(u > v \). Any MPT\((v,1)\) can be embedded in an MPT\((u,1)\) if and only if

1. if \(v = 6 \) then \(u = 7 \) or \(u \geq 10 \),
2. if \(v > 6 \) and \(v \) is even then \(u = v + 1 \) or \(u \geq 2v \), and
3. if \(v > 6 \) and \(v \) is odd then \(u \geq 2v \).

An MPT\((v,\lambda)\) is called simple if it contains no repeated triples. In 1995, Milici et al. [12] proved that for \(v \geq 3 \) and any even \(\lambda \), a simple MPT\((v,\lambda)\) can be embedded in a simple MPT\((u,\lambda)\) if and only if \(u \geq 2v + 1 \). As a consequence of this result, we then have the following theorem.

Theorem 1.5 (Milici et al. [12]). Let \(v \geq 6 \) and \(\lambda \equiv 0 \, (\text{mod} \, 2) \). An MPT\((v,\lambda)\) can be embedded in an MPT\((u,\lambda)\) if and only if \(u \geq 2v + 1 \).
For $\lambda > 1$, it is easy to prove the following lemma by Table 1 and simple counting.

Lemma 1.6. Let u be λ-admissible, $v \geq 6$ and $\lambda > 1$. Then a necessary condition for the embedding of an $MPT(v, \lambda)$ in a $TS(u, \lambda)$ is $u \geq 2v + 1$.

In this paper, by proving the following theorem, we show that the necessary condition of Lemma 1.6 is also sufficient for the embedding of any $MPT(v, \lambda)$ in a $TS(u, \lambda)$ for $\lambda > 1$.

Theorem 1.7. Let $v \geq 6$ and $\lambda > 1$. Then an $MPT(v, \lambda)$ can be embedded in a $TS(u, \lambda)$ if and only if $\lambda(u - 1) \equiv 0 \pmod{6}$, $\lambda u(u - 1) \equiv 0 \pmod{6}$ and $u \geq 2v + 1$.

2. Basic construction techniques

Let $A_1 + A_2 + \cdots + A_n$ denote the union of multisets $A_1, A_2, \ldots, A_{n-1}$ and A_n (so if e occurs k_i times in A_i for any $1 \leq i \leq n$, then it occurs $k_1 + k_2 + \cdots + k_n$ times in $A_1 + A_2 + \cdots + A_n$). If $A_1 = A_2 = \cdots = A_n = A$, then let nA denote $A_1 + A_2 + \cdots + A_n$. Let \mathcal{L}_n denote the multigraph on n vertices in which each pair of vertices is joined by exactly λ edges. Let $V(G)$ and $E(G)$ denote the vertex set and edge set of a multigraph G respectively. Given two multigraphs G and H, the union $G \cup H$ is the graph with $V(G \cup H) = V(G) \cup V(H)$ and $E(G \cup H) = E(G) + E(H)$. If $V(G) \cap V(H) = \emptyset$, then the join $G \vee H$ is the graph with $V(G \vee H) = V(G) \cup V(H)$ and $E(G \vee H) = E(G) + E(H) + \{|x, y| x \in V(G), y \in V(H)\}$. If G is a multigraph, then let λG denote the graph with $V(\lambda G) = V(G)$ and $E(\lambda G) = \lambda E(G)$. Let \mathcal{G} denote the complement of the graph G. We refer to [4] for an overview on graph theory.

Construction 2.1. Suppose (X, A) is an $MPT(v, \lambda_1)$ with leave $L(v, \lambda_1)$ and (X, B) is an $MPT(v, \lambda_2)$ with leave $L(v, \lambda_2)$. Let $u > v$, and u be both λ_1-admissible and λ_2-admissible. If the $MPT(v, \lambda_2)$ can be embedded in a $TS(u, \lambda_1)$, the $MPT(v, \lambda_2)$ can be embedded in a $TS(u, \lambda_1)$ and $L(v, \lambda_1) \cup L(v, \lambda_2)$ is a $L(v, \lambda_1 + \lambda_2)$, then an $MPT(v, \lambda_1 + \lambda_2)$ can be embedded in a $TS(u, \lambda_1 + \lambda_2)$.

Proof. Let $V(\mathcal{K}_z) = X, V(K_{u-1}) = Z$ and $X \cap Z = \emptyset$. We recall that embedding an $MPT(v, \lambda_1 + \lambda_2)$ in a $TS(u, \lambda_1 + \lambda_2)$ is equivalent to partitioning the set of edges in $(\lambda_1 + \lambda_2)(\mathcal{K}_z \vee K_{u-1}) \cup L(v, \lambda_1 + \lambda_2)$ into triples. The union of the graph $(\mathcal{K}_z \vee K_{u-1}) \cup L(v, \lambda_1)$ and the graph $(\mathcal{K}_z \vee K_{u-1}) \cup L(v, \lambda_2)$ is exactly the graph $(\lambda_1 + \lambda_2)(\mathcal{K}_z \vee K_{u-1}) \cup L(v, \lambda_1 + \lambda_2)$ since $L(v, \lambda_1) \cup L(v, \lambda_2) = L(v, \lambda_1 + \lambda_2)$. Since each of the set of edges in $\lambda_1(\mathcal{K}_z \vee K_{u-1}) \cup L(v, \lambda_1)$ and $\lambda_2(\mathcal{K}_z \vee K_{u-1}) \cup L(v, \lambda_2)$ respectively can be partitioned into triples, the conclusion follows.

Theorem 2.2. Let $u > v \geq 6, v \equiv 0, 4 \pmod{6}, u \equiv 5 \pmod{6}$. Then an $MPT(v, 3)$ can be embedded in a $TS(u, 3)$ if $u \geq 2v + 1$.

Proof. We prove the theorem for the case $v \equiv 0 \pmod{6}$, the case $v \equiv 4 \pmod{6}$ can be dealt with in a similar way. Let X be a v-set, $Y = X \cup Z_{u-1}$ and $X \cap Z_{u-1} = \emptyset$. By Mendelsohn and Rosa [10] there exists an $MPT(u, 1)$ (Y, B_1) with leave $\{0, 1\}, \{1, 2\}, \{2, 3\}, \{0, 3\}$ containing an $MPT(v, 1)$ (X, A_1) as a subsystem. By Milici et al. [12] there exists an $MPT(u, 2)$ (Y, B_2) with leave $\{0, 2\}, \{0, 2\}$ containing a $TS(v, 2)$ (X, A_2) as a subsystem. Let $A = A_1 + A_2$ and $B = B_1 + B_2 + \{0, 1, 2\}, \{0, 2, 3\}$. Then (X, A) is an $MPT(v, 3)$ and (Y, B) is a $TS(u, 3)$ containing (X, A) as a subsystem. This completes the proof.

By using Theorems 1.1, 1.4, 1.5, 2.2 and Construction 2.1, we have the following theorem:

Theorem 2.3. Let $v \geq 6, \lambda > 1$, and let u be λ-admissible. If $u \geq 2v + 1$, then any $MPT(v, \lambda)$ can be embedded in a $TS(u, \lambda)$ with the following possible exceptions:

1. $v \equiv 2 \pmod{6}, \lambda \equiv 3 \pmod{6}$, and the leave of $MPT(v, \lambda)$ is $1F_5, 1FH$ or $1FY$, and
2. $v \equiv 2 \pmod{6}$ and $\lambda \equiv 5 \pmod{6}$

In order to eliminate all of these possible exceptions, by Construction 2.1 and Theorem 2.3, we only need to embed an $MPT(v, \lambda)$ in a $TS(u, \lambda)$ for $v \equiv 2 \pmod{6}, \lambda = 3$ or 5, and all admissible $u \geq 2v + 1$.

Now let X be a v-set and $v \geq 2$. A collection F of 2-subsets (called pairs) of X is called a partial λ-factor if each vertex of X is contained in at most λ pairs of F, and F is called a λ-factor if each vertex of X is contained in exactly λ pairs of F. If F is a partial λ-factor and $a \in X$, then let $a \ast F$ denote the multiset $\{\{a, x, y\} | \{x, y\} \in F\}$.
Construction 2.4. Let \(u > v \geq 6, \lambda = 2\lambda_0 + 1 \geq 3, u \) be \(\lambda \)-admissible, \(V(K_v) = X = \{ a_i | 1 \leq i \leq v \} \), \(V(K_{u-v}) = Z \), \(X \cap Z = \phi \) and \(Y = X \cup Z \). Let \((X, A) \) be an MPT\((v, \lambda)\) with leave \(L(v, \lambda) \). If we can remove enough triples (denoted the collection of all these triples by \(H \)) from \(G = \lambda(\bar{K}_v \cup K_{u-v}) \cup L(v, \lambda) \) such that \(G - H \) satisfies:

1. each edge of \(L(v, \lambda) \) has been removed;
2. there are only \(2\lambda \) edges joining \(x \) and \(z \) for each \(x \in X \) and \(z \in Z \); and
3. the subgraph of \(G - H \) induced by \(Y \) is a \(2\lambda_0v \)-regular subgraph, then an MPT\((v, \lambda)\) with leave \(L(v, \lambda) \) can be embedded in a TS\((u, \lambda)\).

Proof. As \(2\lambda_0v \) is even, by Petersen [3] the subgraph of \(G - H \) induced by \(Y \) has a 2-factorization \(C = \{ F_i \} \) \(1 \leq i \leq v \), \(1 \leq j \leq \lambda_0 \}. For any \(1 \leq i \leq v \), let \(B_i = a_i * F_{11} + a_i * F_{12} + \cdots + a_i * F_{1\lambda_0} \). Let \(B = A + H + B_1 + B_2 + \cdots + B_\lambda \). Then \((Y, B) \) is a TS\((u, \lambda)\) containing \((X, A) \) (MPT\((v, \lambda)\)) as a subsystem. This completes the proof.

3. 1-factors and partial 1-factors in complete graphs

Lemma 3.1. Let \(n = 6t + s + 4, s = 0, 2 \) or 4, \(n \geq 14 \), and \(V(K_n) = \{ a, b, c, d, \infty \} \cup Z_{6t+3-1} \). Then \(K_n \) contains a subgraph whose edge set can be partitioned into 7 partial 1-factors each missing exactly the four vertices of \(\{ a, b, c, d \} \) and \(6t + s - 8 \) 1-factors each containing no edges of the complete graph \(K_4 \) on \(\{ a, b, c, d \} \).

Proof. The seven partial 1-factors are:

\[
F_i^1 = \{ i + j, i - j \} | j \in Z_{3t+s+2} \setminus \{ 0 \} \cup \{ i, \infty \},
\]

\[
6t + s - 8 \leq i \leq 6t + s - 2.
\]

Let \(m = 1 - (-1)^{\theta} \). For \(0 \leq i \leq 3t + s/2 - 5 \), let

\[
F_i^{2j} = \{ a, 3t + 2i + s/2 - 2 \}, \{ b, 3t + 2i + s/2 + 1 \}, \{ c, 3t + 2i + s/2 \}
\]

\[
\cup \{ | 3t + 2i + j + s/2 + 2, 3t + 2i - 2j + s/2 - 3 | \}
\]

\[
0 \leq j \leq (6t + s - m - 8)/4
\]

\[
\cup \{ | 3t + 2i + j + s/2 + 3, 3t + 2i - 2j + s/2 - 4 | \}
\]

\[
0 \leq j \leq (6t + s + m - 12)/4
\]

\[
\cup \{ | d, 3t + 2i + s/2 - 1, 2i, \infty \} \}, \text{ and}
\]

\[
F_i^{2j+1} = \{ a, 3t + 2i + s/2 + 1 \}, \{ b, 3t + 2i + s/2 \}, \{ c, 3t + 2i + s/2 - 1 \}
\]

\[
\cup | 3t + 2i + j + s/2 + 4, 3t + 2i - 2j + s/2 - 3 | \}
\]

\[
0 \leq j \leq (6t + s + m - 12)/4
\]

\[
\cup | 3t + 2i + j + s/2 + 3, 3t + 2i - 2j + s/2 - 2 | \}
\]

\[
0 \leq j \leq (6t + s - m - 8)/4
\]

\[
\cup | d, 3t + 2i + s/2 + 2, 2i + 1, \infty | \}.
\]

Then \(F_i^0, F_i^1, \ldots, F_i^{6t+s-9} \) are the desired \(6t + s - 8 \) 1-factors. This completes the proof.

Since there are 6 edges in the complete graph \(K_4 \), the following lemma is obvious:

Lemma 3.2. Let \(n = 6h + s + 4, s = 0 \) or 2, \(n \geq 12 \), and \(V(K_n) = \{ a, b, c, d, \infty \} \cup Z_{6h+3-1} \). Then \(K_n \) contains a subgraph whose edge set can be partitioned into \(6h + s - 4 \) 1-factors each containing no edges of the complete graph \(K_4 \) on \(\{ a, b, c, d \} \).
Lemma 3.3. Let \(n = 6h + 9 \geq 15 \) and \(V(K_n) = \{a, b, c, d, e, \infty\} \cup Z_{6h+3}\). Then \(2K_n \) contains a subgraph whose edge set can be partitioned into \(6h + 9 \) partial 1-factors \(F_0, F_1, \ldots, F_{6h+7} \) and \(F_{6h+8} \) satisfying the following properties:

1. For any \(0 \leq i \leq 3h \), each of \(F_{2i} \) and \(F_{2i+1} \) misses exactly the vertex \(i \) and contains no edges of the complete graph \(K_5 \) on \(\{a, b, c, d, e\} \);
2. For any \(6h + 2 \leq i \leq 6h + 8 \), \(F_i \) misses exactly the five vertices of \(\{a, b, c, d, e\} \).

Proof. Set \(t = h \) in Lemma 3.1, and let \(F_{2i+4} = F^4_t \) for any \(i \) where \(6h - 4 \leq i \leq 6h + 2 \). Now choose \(4h \) 1-factors \(F_0^4, F_1^4, \ldots, F_{4h-2}^4 \) and \(F_{4h}^4 \) in the proof of Lemma 3.1. For any \(i \) where \(0 \leq i \leq 2h - 1 \), we replace the vertex \(i \) in \(F^4_{2i} \) and \(F^4_{2i+1} \) by \(e \). Then we obtain \(4h \) partial 1-factors (denoted by \(F_0, F_1, \ldots, F_{4h-2} \) and \(F_{4h-1} \) correspondingly) in \(2K_h \). It is easy to check that there exist no repeated edges in these \(4h \) partial 1-factors. So we can again choose \(2h + 2 \) 1-factors \(F_0^4, F_1^4, \ldots, F_{2h}^4 \) and \(F_{2h+1}^4 \) in the proof of Lemma 3.1. Let \(\sigma = (0, 2h)(1, 2h+1) \ldots (h, 3h) \) be a permutation of \(V(K_h) \). For any \(i \) where \(2h \leq i \leq 3h \), let \(k = i - 2h \) and set

\[
F_{ti} = \sigma(F^4_{2i}) = \{(x, \sigma(y)) | (x, y) \in F^4_{2i}\}, \quad \text{and}
\]

\[
F_{ti} = \sigma(F^4_{2i+1}) = \{(x, \sigma(y)) | (x, y) \in F^4_{2i+1}\}.
\]

If we replace the vertex \(i \) in \(F_0^4 \) and \(F_1^4 \) by \(e \) for any \(i \) where \(2h \leq i \leq 3h \), then we obtain \(2h + 2 \) new partial 1-factors (denoted by \(F_{2h}, F_{2h+1}, \ldots, F_{6h} \) and \(F_{6h+1} \) correspondingly) in \(2K_h \). It is also easy to check that there exist no repeated edges in all these \(2h + 2 \) partial 1-factors. Therefore, \(F_0, F_1, \ldots, F_{6h+7} \) and \(F_{6h+8} \) are the desired \(6h + 9 \) partial 1-factors. This completes the proof. ∎

Similarly, the following lemma can also be proved, we omit the details here.

Lemma 3.4. Let \(n = 18h + 21 \geq 21 \) and \(V(K_n) = \{a, b, c, d, e, \infty\} \cup Z_{18h+15}\). Then \(K_n \) contains a subgraph whose edge set can be partitioned into \(6h + 9 \) partial 1-factors \(F_0, F_1, \ldots, F_{6h+7} \) and \(F_{6h+8} \) satisfying properties (1) and (2) of Lemma 3.3.

Lemma 3.5. Let \(n = 6t + s + 2 \), \(s = 2 \) or \(4 \), \(t \geq 1 \) and \(V(K_n) = \{a, b, \infty\} \cup Z_{6t+s-1}\). Then \(K_n \) contains a subgraph whose edge set can be partitioned into \(5 \) partial 1-factors each missing exactly the two vertices of \(\{a, b\} \) and \(6t + s - 6 \) 1-factors each containing no edge \(\{a, b\} \).

Proof. The five partial 1-factors are:

\[
F^t_0 = \{\{i + j, i - j\} | j \in Z_{3t+s/2} \setminus \{0\}\} \cup \{\{i, \infty\}\},
\]

\[
6t + s - 6 \leq i \leq 6t + s - 2.
\]

Let \(m = 1 - (-1)^t \). For \(0 \leq i \leq 3t + s/2 - 4 \), let

\[
F^t_{2i} = \{(a, 3t + 2i + s/2 - 2), (b, 3t + 2i + s/2 + 1), \{2i, \infty\}\}
\]

\[
\cup \{\{3t + 2i + 2j + s/2, 3t + 2i + 2j - s/2 - 1\} | 0 \leq j \leq [6t + 2s - (-1)^{t/2}m - 8]/4\}
\]

\[
\cup \{\{3t + 2i + 2j + s/2 + 3, 3t + 2i - 2j + s/2 - 4\} | 0 \leq j \leq [6t + (-1)^{t/2}m - 8]/4\}, \quad \text{and}
\]

\[
F^t_{2i+1} = \{(a, 3t + 2i + s/2 + 1), (b, 3t + 2i + s/2), \{1 + 2i, \infty\}\}
\]

\[
\cup \{\{3t + 2i + 2j + s/2 + 2, 3t + 2i - 2j + s/2 - 1\} | 0 \leq j \leq [6t + (-1)^{t/2}m - 4]/4\}
\]

\[
\cup \{\{3t + 2i + 2j + s/2 + 3, 3t + 2i - 2j + s/2 - 2\} | 0 \leq j \leq [6t + 2s - (-1)^{t/2}m - 12]/4\}.
\]

Then \(F_0^t, F_1^t, \ldots, F_{6t+s-7}^t \) are the desired \(6t + s - 6 \) 1-factors. This completes the proof. ∎
We also need the following theorem in Section 4.

Theorem 3.6 (Colbourn and Rosa [1]). Let \(n \) be an odd integer and \(n \neq 9 \). Then for each 2-regular subgraph \(Z \) of \(K_n \), \(K_n - Z \) can be partitioned into triples if and only if \(3|n(n-1)/2 - |E(Z)| \).

4. The case \(\lambda = 3 \) and \(v \equiv 2 \) (mod 6)

For \(n \equiv 1 \) (mod 2), as in [14], let \(D(n, \lambda) \) be the multiset \(\lambda\{d | 1 \leq d \leq (n-1)/2 \} \) with elements from \(Z_n \). The elements of \(D(n, \lambda) \) are called differences. We remark that we also use \(n - d \) to represent the difference \(d \).

Let \(a, b, c \in D(n, \lambda) \), if \(a + b + c \equiv 0 \) (mod \(n \)) or one is the sum of the others, say, \(a + b \equiv c \) (mod \(n \)), then \(D = (a, b, c) \) is called a difference triple, let \((D) \) denote the set of triples \(\{(0, a, a+b) + i|0 \leq i \leq n-1\} \) or \(\{(0, b, a+b) + i|0 \leq i \leq n-1\} \), and we say that \((D) \) is induced by the difference triple \(D \). If \(n \equiv 0 \) (mod 3), and \(a = b = c = n/3 \), then \(\{(0, n/3, 2n/3) + i|0 \leq i \leq n/3 - 1\} \) can form a 2-regular spanning subgraph of \(K_n \) on the vertex set \(Z_n \). In this case, the difference \(n/3 \) is used once. Otherwise, the triple set induced by the difference triple \((a, b, c) \) forms a 6-regular spanning subgraph of \(K_n \) on \(Z_n \).

In this section, let \(v \equiv 2 \) (mod 6), \(v \geq 8 \), \(V(K_v) = V(K_n) - X = \{a|0 \leq i \leq v-1\} \), and let \((X, A)\) be an MPT\((v, 3)\) with leave \(L(v, 3) = 1F_5, 1FH \) or \(1FY \). Let \(u > v \), \(Y = X \cup Z_{u-v}, X \cap Z_{u-v} = \emptyset \) and \(V(K_{u-v}) = Z_{u-v} \). Set

\[
1F_5 = \{(a_0, a_1)|1 \leq i \leq 5\} \cup \{(a_2, a_{2i+1})|3 \leq i \leq v/2 - 1\};
\]

\[
1FH = \{(a_0, a_1), (a_0, a_2), (a_1, a_3), (a_3, a_4), (a_3, a_5)\} \cup \{(a_{2i}, a_{2i+1})|3 \leq i \leq v/2 - 1\};
\]

\[
1FY = \{(a_0, a_1), (a_0, a_2), (a_0, a_6), (a_4, a_5), (a_4, a_6), (a_4, a_7)\}
\]

\[
\cup \{(a_{2i}, a_{2i+1})|4 \leq i \leq v/2 - 1, v > 8\};
\]

\[
A_0 = \{(a_1, 1, 4), (a_1, 2, 3), (a_2, 0, 2), (a_2, 3, 4), (a_3, 1, 3), (a_3, 0, 4),
\]

\[
(a_4, 0, 1), (a_4, 2, 4), (a_5, 0, 3), (a_5, 1, 2)\} \cup \{(a_0, a_i - 1)|1 \leq i \leq 5\};
\]

\[
A_1 = \{(a_0, a_1, 0), (a_1, a_2, 1), (a_1, a_3, 2), (a_1, a_4, 3), (a_1, a_5, 4), (a_1, 3, 4),
\]

\[
(a_2, 1, 4), (a_2, 2, 4), (a_2, 3, 0), (a_3, 0, 1), (a_4, 1, 2), (a_4, 0, 4), (a_5, 1, 3), (a_5, 0, 2),
\]

\[
(a_0, 1, 4), (a_0, 2, 3)\} \cup \{(a_0, a_i | 0 \leq i \leq 5\};
\]

\[
A_2 = \{(a_0, a_1, 0), (a_0, a_2, 1), (a_4, a_5, 2), (a_1, a_2, 3), (a_2, 0, 3), (a_3, 1, 4), (a_3, 0, 2),
\]

\[
(a_2, 2, 4), (a_1, 1, 2), (a_1, 3, 4), (a_5, 0, 4), (a_5, 1, 3), (a_0, 2, 3), (a_4, 0, 1)\}.
\]

Lemma 4.1. Let \(v \equiv 2 \) (mod 6), \(v \geq 8 \) and \(u \equiv 1 \) (mod 6). If \(u \geq 2v + 1 \), then an MPT\((v, 3)\) with leave \(1F_5, 1FH \) or \(1FY \) can be embedded in a TS\((u, 3)\).

Proof. Write \(v = 6h + 8 \) and \(u - v = 6t + 5 \). By Theorem 1.2, we can suppose \(2v + 1 \leq u \leq 4v \), so \(1 \leq h + 1 \leq t \leq 3h + 3 \).

Case 1: \(h = 0 \) and \(t = 1 \). We take 6 1-factors \(F_0, F_1, F_2, F_3, F_4 \) and \(F_5 \) in \(2K_6 \) on \(\{5, 6, 7, 8, 9, 10\} \) such that each of the edges \(\{5, 6\} \) and \(\{9, 10\} \) is not contained in any of the above 1-factors. Let

\[
B_1 = \{(4, a_6, a_7), (0, 5, a_6), (1, 6, a_6), (2, 7, a_6), (3, 8, a_6), (9, 10, a_6), (0, 7, a_7),
\]

\[
(1, 8, a_7), (2, 9, a_7), (3, 10, a_7), (5, 6, a_7), (0, 1, 4), (2, 3, 4)\};
\]

\[
B_2 = \{(0, 1, 3) + i|0 \leq i \leq 10\}, B_3 = \bigcup_{i=0}^{5}(a_i \ast F_i), \text{ and } B_4 = (B_1 \setminus \{(a_6, a_7, 4)\}) \cup \{(4, a_6, a_7), (4, a_5, a_7)\}.
\]

Set

\[
A_0 + B_1 + B_2 + B_3, \text{ if } L(v, 3) = 1F_5,
\]

\[
A_1 + B_1 + B_2 + B_3, \text{ if } L(v, 3) = 1FH, \text{ and}
\]

\[
A_2 + B_2 + B_3 + B_4, \text{ if } L(v, 3) = 1FY.
\]
Case 2: $t = h + 1 \geq 2$. By Lemmas 3.1 and 3.2, $2K_{3h+1}$ contains 7 partial 1-factors $F_0, F_1, F_2, F_3, F_4, F_5$ and F each missing exactly the five vertices of $\{0, 1, 2, 3, 4\}$ and $6h + 2$ partial 1-factors $F_0, F_1, \ldots, F_{6h+6}$ and F_{6h+7} each missing exactly the vertex 4 and containing no edges of K_4 on $\{0, 1, 2, 3\}$. Suppose $F = \{(2i - 1, 2i)\mid 3 \leq i \leq 3h + 5\}$.

Let \(B_1 = \{(4, a_{2i}, a_{2i+1})\mid 3 \leq i \leq 3h + 3\} \), \(B_2 = \bigcup_{i=0}^{6h+7} a_i * F_i \) \(\cup \{(4, 2i - 1, 2i)\mid 3 \leq i \leq 3h + 2\} \) and \(\sigma = (4h + 5, 6h + 5) \) be a transposition of \(Z_{6h+11} \). Now in the third copy of \(K_{3h+11} \) we take the difference triple \((2h, 2h + 1, 2h + 10) \). Let \(B_0 = \{(0, 2h, 4h + 1)\} \) \(\cup \{(0) \leq i \leq 4h + 2 \leq i \leq 6h + 10\} \), \(B_3 = \{(4, a_{2j}, a_{2j+1})\mid 4 \leq i \leq 3h + 3\} \) \(\cup \{(4, a_0, a_6), (4, a_2, a_7)\} \), and \(B_4 = \{(0, 1, 4), \{2, 3, 4\}\} \).

Set
\[
H = \begin{cases}
A_0 + B_1 + B_2 + B_3 + \sigma(B_0), & \text{if } L(v, 3) = 1F3, \\
A_1 + B_1 + B_2 + B_4 + \sigma(B_0), & \text{if } L(v, 3) = 1FH, \text{ and} \\
A_2 + B_2 + B_3 + B_4 + \sigma(B_0), & \text{if } L(v, 3) = 1FY.
\end{cases}
\]

Case 3: $2 \leq h + 2 \leq t \leq 3h + 2$. By Lemma 3.1, \(K_{3h+1} \) contains 7 partial 1-factors $F_0, F_1, F_2, F_3, F_4, F_5$ and F each missing exactly the five vertices of $\{0, 1, 2, 3, 4\}$ and $6h + 2$ partial 1-factors $F_0, F_1, \ldots, F_{6h+6}$ and F_{6h+7} each missing exactly the vertex 4 and containing no edges of K_4 on $\{0, 1, 2, 3\}$. Suppose $F = \{(2i - 1, 2i)\mid 3 \leq i \leq 3t + 2\}$. Let B_1, B_2 and B_3 be the same as defined in Case 2.

Choose differences of $D(6t + 5, 2)$ to form the following collection T of $2t + 1$ difference triples:

\[
(1, 2t + 2, 2t + 3), \quad (2t, 2t + 2, 2t + 3), \quad (2t, 2t - 3, 2t - 1),
\]

\[
(3, 2t - 2, 2t + 1), \quad (2t, 2t + 1, 2t + 4),
\]

\[
(2i, 3t - i + 2, 3t - i + 3) : 1 \leq i \leq t - 2, \quad t \geq 3, \quad \text{and}
\]

\[
(2i - 1, t + i + 1, t - i + 2) : 1 \leq i \leq t - 2, \quad t \geq 3.
\]

From $T \setminus \{(1, 2t + 2, 2t + 3), (2t, 2t + 2, 2t + 3)\}$, choose $3t - 3h - 3$ difference triples $D_1, D_2, \ldots, D_{3t-3h-4}$ and $D_{3t-3h-3}$. Let $B_4 = (D_1) + (D_2) + \ldots + (D_{3t-3h-3})$. Choose $D_0 = \{(0, 2h, 4i + 2)\} \cup \{(0) \leq i \leq 4, 2h + 5 \leq i \leq 6t + 4\} \cup \{(0, 1, 2t + 3), (1, 2t + 4)\}$, the vertex set $V_1 = \{(0, 1, 2t + 3, 2t + 4)\}$ and the vertex set $V_2 = \{(i) \leq 5 \leq i \leq 2h, \quad 2t + 5 \leq i \leq 2t + 2h + 4, \quad 4t + 7 \leq i \leq 4t + 2h + 6\}$. Clearly, $V_1 \cap V_2 = \emptyset$, so there exists a permutation \(\sigma \) of \(Z_{6h+5} \) such that \(\sigma(0) = 0, \sigma(1) = 4, \sigma(2) = 2, \sigma(2t + 3) = 1, \sigma(2t + 4) = 3 \) and \(\sigma(V_2) = \{(i) \leq 5 \leq i \leq 6t + 4\} \).

Set
\[
H = \begin{cases}
B_1 + B_2 + \sigma(B_4) + \sigma(B_5) + A_0, & \text{if } L(v, 3) = 1F3, \\
B_1 + B_2 + \sigma(B_4) + \sigma(B_5) + A_1, & \text{if } L(v, 3) = 1FH, \text{ and} \\
B_2 + B_3 + \sigma(B_4) + \sigma(B_5) + A_2, & \text{if } L(v, 3) = 1FY.
\end{cases}
\]

Case 4: $t = 3h + 3 \geq 3$. Let the partial 1-factors $F_0, F_1, \ldots, F_{6h+7}$ and F in K_{18h+23} be similar to Case 3. B_1 and B_3 be the same as defined in Case 2, and $B_2 = \bigcup_{i=0}^{6h+7} a_i * F_i \cup \{(4, 2i - 1, 2i)\mid 3 \leq i \leq 3h + 4\}$. Let C_1 denote any $(6h+4)$-cycle on the vertex set $\{i) \leq 5 \leq i \leq 6h + 8\}$, and C_2 any $(18h + 19)$-cycle on the vertex set $\{i) \leq i \leq 18h + 22\}$. By Theorem 3.6, the graph $2K_{18h+23} - (C_1 \cup C_2)$ can be partitioned into a collection B_4 of triples. Set

\[
H = \begin{cases}
B_1 + B_2 + B_3 + A_0, & \text{if } L(v, 3) = 1F3, \\
B_1 + B_2 + B_4 + A_1, & \text{if } L(v, 3) = 1FH, \text{ and} \\
B_2 + B_3 + B_4 + A_2, & \text{if } L(v, 3) = 1FY.
\end{cases}
\]

It can be checked that in each of the above cases, \(3(\bar{K}_e \cup K_{u-v}) \cup L(v, 3) - H \) satisfies conditions (1)–(3) of Construction 2.4. The conclusion follows.

Lemma 4.2. Let $v \equiv 2 \pmod{6}$, $v \equiv 8$ and $u \equiv 3 \pmod{6}$. If $u \geq 2v + 1$, then an MPT$(v, 3)$ with leave $1F3$, $1FH$ or $1FY$ can be embedded in a TS$(u, 3)$.

Proof. Write $v = 6h + 8$ and $u - v = 6t + 7$. Suppose $1 \leq h + 1 \leq t \leq 3h + 2$.

\[1\] **Remark.** If $h = 0$, then both of the subset $\{(4, 2i - 1, 2i)\mid 3 \leq i \leq 3h + 2\}$ of B_2 and the subset $\{(4, a_{2j}, a_{2j+1})\mid 4 \leq i \leq 3h + 3\}$ of B_3 are \emptyset, so is the vertex set V_2. Also, for the following cases in this paper we have similar results.
Case 1: \(t = h + 1 \geq 1 \). Let partial 1-factors \(F_0, F_1, \ldots, F_{6h+7} \) and \(F \) in \(2K_{6h+13} \) be similar to Case 2 in the proof of Lemma 4.1. If \(h \geq 1 \), then we choose two difference triples, \((2h, 2h + 1, 2h + 12)\) and \((1, 2h + 10, 2h + 11)\), from difference set \(D(6h + 13, 1) \). Let the vertex set \(V = \{ i | 0 \leq i \leq 2h - 1, 2h - 2 \leq i \leq 4h - 1, 4h + 1 \leq i \leq 6h \} \). Then there exists a permutation \(\sigma \) of \(Z_{6h+13} \) such that \(\sigma(V) = \{ i | 5 \leq i \leq 6h + 4 \} \). Let \(B_1, B_2 \) and \(B_3 \) be the same as defined in Case 2 in the proof of Lemma 4.1, \(B_4 = \{ \{ 0, 1, 4 \}, \{ 2, 3, 4 \} \} \), \(B_5 = \{ \{ 0, 1, 4h + 3 \} + i | 0 \leq i \leq 6h + 12 \} \cup \{ \{ 0, 2h, 4h + 1 \} + i | 2h \leq i \leq 6h + 12 \} \),

\[
B_4 = \begin{cases}
\{ \sigma(B_6), & \text{if } h \geq 1, \\
\{ \{ 0, 1, 4 \} + i | 0 \leq i \leq 12 \} \cup \{ \{ 0, 2, 7 \} + i | 0 \leq i \leq 12 \}, & \text{if } h = 0, \text{ and}
\end{cases}
\]

\[
H = \begin{cases}
B_1 + B_2 + B_4 + B_5 + A_0, & \text{if } L(v, 3) = 1F_3, \\
B_1 + B_2 + B_3 + B_5 + A_1, & \text{if } L(v, 3) = 1FH, \text{ and}
\end{cases}
\]
\[
B_2 + B_3 + B_4 + B_5 + A_2, & \text{if } L(v, 3) = 1FYY.
\]

Case 2: \(1 \leq h + 1 \leq t \leq 3h + 1 \). Let the partial 1-factors \(F_0, F_1, \ldots, F_{6h+7} \) and \(F \) in \(K_{6h-t} \) be similar to Case 3 in the proof of Lemma 4.1. Choose differences of \(D(6t + 7, 2) \) to form the following collection \(T \) of difference triples:

\[
(2i, 3t - i + 3, 3t - i + 4): 1 \leq i \leq t, \text{ and}
\]
\[
(2i - 1, t + i + 1, t - i + 2): 1 \leq i \leq t + 1.
\]

From \(T \setminus \{ (2t - 2, 2t + 4, 2t + 5), (1, 2t + 1, 2t + 2) \} \), choose \(3t - 3h - 2 \) difference triples \(D_1, D_2, \ldots, D_{3t-3h-2} \). Let \(B_4 = \{ (D_1) + (D_2) + \cdots + (D_4), B_4 \text{ and } B_5 \text{ be the same as defined in Case 2 in the proof of Lemma 4.1, } B_3 = \{ \{ 4t - 1, 4t + 6 + 1 \}, \{ 4t, 4t + 1, 6t + 2 \} \} \cup \{ \{ 0, 2t - 2, 4t + 2 \} + i | 2h \leq i \leq 6t + 6 \}, \text{ and the vertex set } V = \{ i | 0 \leq i \leq 2h - 1, 2t - 2 \leq i \leq 2t + 2h - 3, 4t + 2 \leq i \leq 4t + 2h + 1 \} \text{. Clearly, there exists a permutation } \sigma \text{ of } Z_{6h+7} \text{ such that } \sigma(4t - 1) = 0, \sigma(4t) = 4, \sigma(6t + 1) = 1, \sigma(4t + 1) = 2, \sigma(6t + 2) = 3 \text{ and } \sigma(V) = \{ i | 5 \leq i \leq 6h + 4 \}. \text{ Set}
\]

\[
H = \begin{cases}
B_1 + B_2 + \sigma(B_4) + \sigma(B_5) + A_0, & \text{if } L(v, 3) = 1F_3, \\
B_1 + B_2 + \sigma(B_4) + \sigma(B_5) + A_1, & \text{if } L(v, 3) = 1FH, \text{ and}
\end{cases}
\]
\[
B_2 + B_3 + \sigma(B_4) + \sigma(B_5) + A_2, & \text{if } L(v, 3) = 1FYY.
\]

Case 3: \(t = 3h + 2 \geq 2 \). Let the partial 1-factors \(F_0, F_1, \ldots, F_{6h+7} \) and \(F \) in \(K_{6h+19} \) be similar to Case 3 in the proof of Lemma 4.1. Choose differences of \(D(18h + 19, 2) \) to form the following collection \(T \) of difference triples:

\[
2\{ (3h + 3, 3h + 4, 6h + 7),
\]
\[
(3i + 1, 4h - i + 5, 4h + 2i + 6) : 0 \leq i \leq h,
\]
\[
(3i + 3, 6h - 2i + 5, 6h + i + 8) : 0 \leq i \leq h - 1, h \geq 1,
\]
\[
(3i + 2, 8h - i + 8, 8h + 2i + 10) : 0 \leq i \leq h.
\]

From \(T \setminus \{ (3h + 3, 3h + 4, 6h + 7), (2, 8h + 8, 8h + 10) \} \), choose \(6h + 4 \) difference triples \(D_1, D_2, \ldots, D_{6h+3} \) and \(D_{6h+4} \). Let \(B_1, B_2 \) and \(B_3 \) be the same as defined in Case 2 in the proof of Lemma 4.1, \(B_4 = \{ (D_1) + (D_2) + \cdots + (D_6), B_5 = \{ \{ 2h + 1, 2h + 3, 10h + 11 \}, \{ 2h + 3, 2h + 5, 10h + 13 \} \} \cup \{ \{ 0, 3h + 3, 6h + 7 \} + i | 2h \leq i \leq 18h + 18 \}, \text{ and the vertex set } V = \{ i | 0 \leq i \leq 2h - 1, 3h - 3 \leq i \leq 5h + 2, 6h + 7 \leq i \leq 8h + 6 \} \). Clearly, there exists a permutation \(\sigma \) of \(Z_{6h+19} \) such that \(\sigma(2h + 1) = 0, \sigma(2h + 3) = 4, \sigma(10h + 11) = 1, \sigma(2h + 5) = 2, \sigma(10h + 13) = 3 \text{ and } \sigma(V) = \{ i | 5 \leq i \leq 6h + 4 \}. \text{ Set}
\]

\[
H = \begin{cases}
B_1 + B_2 + \sigma(B_4) + \sigma(B_5) + A_0, & \text{if } L(v, 3) = 1F_3, \\
B_1 + B_2 + \sigma(B_4) + \sigma(B_5) + A_1, & \text{if } L(v, 3) = 1FH, \text{ and}
\end{cases}
\]
\[
B_2 + B_3 + \sigma(B_4) + \sigma(B_5) + A_2, & \text{if } L(v, 3) = 1FYY.
\]

It can be checked that in each of the above cases, \(3(\bar{K}_e \cup K_{n-e}) \cup L(v, 3) - H \) satisfies conditions (1)-(3) of Construction 2.4. The conclusion follows. \(\square \)
Lemma 4.3. Let \(v \equiv 2 \) (mod 6), \(v \geq 8 \) and \(u \equiv 5 \) (mod 6). If \(u \geq 2v + 1 \), then an MPT\((v, 3)\) with leave 1F5, 1FH or 1FYY can be embedded in a TS\((u, 3)\).

Proof. Write \(v = 6h + 8 \) and \(u - v = 6t + 9 \). Suppose \(0 \leq h \leq t \leq 3h + 2 \).

Case 1: \(t = h = 0 \). Let \(\{F_0,F_1,F_2\} \) be a 1-factorization of \(K_4 \) on \(\{5,6,7,8\} \), \(B_1 = (\bigcup_{i=0}^2 a_i \ast F_i) \cup (\bigcup_{i=3}^5 a_i \ast F_{i-3}) \cup \{(0,1,4), (2,3,4)\} \), \(B_2 = \{a_i,i+5\} 0 \leq i \leq 3; j = 6,7 \} \cup \{(4,a_6,a_7)\} \), and \(B_3 = \{a_i,i+5\} 0 \leq i \leq 3; j = 6,7 \} \cup \{(4,a_6,a_7)\} \). Set

\[
H = \begin{cases}
B_1 + B_2 + A_0, & \text{if } L(v,3) = 1F5, \\
B_1 + B_2 + A_1, & \text{if } L(v,3) = 1FH, \text{ and} \\
B_1 + B_2 + A_2, & \text{if } L(v,3) = 1FYY.
\end{cases}
\]

Case 2: \(t = h \geq 1 \) and \(L(v,3) = 1F5 \) or 1FH. By Lemma 3.3, \(2K_{6h+9} \) contains 6 partial 1-factors \(F_0, F_1, F_2, F_3, F_4 \) and \(F_5 \) each missing exactly the five vertices of \(\{0,1,2,3,4\} \) and \(6h + 2 \) partial 1-factors \(F_6, F_7, \ldots, F_{6h+6} \) and \(F_{6h+7} \) such that each of \(F_2 \) and \(F_{2i+1} \) misses exactly the vertex \(i + 2 \) for each \(i \) where \(3 \leq i \leq 3h + 3 \). Let \(\sigma = (3h + 2, 6h + 4) \) be a transposition of \(Z_{6h+9} \), \(B_1 = (\bigcup_{i=0}^{6h+7} a_i \ast F_i) \cup \{(i+2,a_{2i},a_{2i+1})\} 3 \leq i \leq 3h+3\} \), and \(B_2 = \{0,0,2,2h+5\} + i | 0 \leq i \leq h + 1 \}. \) Set

\[
H = \begin{cases}
B_1 + \sigma(B_2) + A_0, & \text{if } L(v,3) = 1F5, \text{ and} \\
B_1 + \sigma(B_2) + A_1, & \text{if } L(v,3) = 1FH.
\end{cases}
\]

Case 3: \(t = h \geq 1 \) and \(L(v,3) = 1FYY \). By Lemmas 3.1 and 3.3, \(2K_{6h+9} \) contains 6 partial 1-factors \(F_0, F_1, F_2, F_3, F_4 \) and \(F_5 \) each missing exactly the five vertices of \(\{0,1,2,3,4\} \) and \(2 \) partial 1-factors \(F_6 \) and \(F_7 \) each missing exactly the vertex \(4 \) and containing no edges of \(K_4 \) on \(\{0,1,2,3\} \) and \(6h \) partial 1-factors \(F_8, F_9, \ldots, F_{6h+6} \) and \(F_{6h+7} \) such that each of \(F_2 \) and \(F_{2i+1} \) misses the vertex \(i + 1 \) for each \(i \) where \(4 \leq i \leq 3h + 3 \). Let \(\sigma = (2h + 5, 3h + 5) \) be a transposition of \(Z_{6h+9} \), \(B_1 = (\bigcup_{i=0}^{6h+7} a_i \ast F_i) \cup \{(i+1,a_{2i},a_{2i+1})\} 4 \leq i \leq 3h+3\} \), \(B_2 = \{(i+1,a_{2i},a_{2i+1})\} 4 \leq i \leq 3h+3\} \cup \{(4,a_6,a_7)\} \), and \(B_3 = \{0,0,2h+5\} + i | 5 \leq i \leq h + 4 \}. \) Set

\[
H = B_1 \cup B_2 \cup \sigma(B_4) \cup A_3.
\]

Case 4: \(1 \leq h + 1 \leq t \leq 3h + 1 \). Let the partial 1-factors \(F_0,F_1,\ldots,F_{6h+7} \) and \(F \) in \(K_{u-e} \) be similar to Case 3 in the proof of Lemma 4.1. Choose differences of \(D(6t + 9, 2) \) to form the following collection \(T \) of difference triples:

\[
(2i,3t - i + 3,3t - i + 5) : 1 \leq i \leq t + 1, \text{ and} \\
(2i - 1, t + i - 1, t - i + 1) : 1 \leq i \leq t + 1.
\]

From \(T \setminus \{(2t - 2, 2t + 5, 2t + 6), (1t + 1, 2t + 2)\} \), choose \(3t - 3h - 1 \) difference triples \(D_1,D_2,\ldots,D_{3t-3h-1} \). Let \(B_1, B_2 \) and \(B_3 \) be the same as defined in Case 2 in the proof of Lemma 4.1, \(B_4 = (D_1 + (D_2 + \cdots + (D_{3t-3h-1})) \). Set \(V = \{0 \leq i \leq 2t - 1, 2t - 2 \leq i \leq 2t + 2h - 3, 4t + 3 \leq i \leq 4t + 2h + 2\} \). Clearly, there exists a permutation \(\sigma \) of \(Z_{6h+9} \) such that \(\sigma(4i) = 0, \sigma(4t + 1) = 4, \sigma(4t + 2) = 2, \sigma(6t + 2) = 1, \sigma(6t + 3) = 3 \) and \(\sigma(V) = \{i | 5 \leq i \leq 6h + 4 \}. \) Set

\[
H = \begin{cases}
B_1 + B_2 + \sigma(B_4) + \sigma(B_3) + A_0, & \text{if } L(v,3) = 1F5, \\
B_1 + B_2 + \sigma(B_4) + \sigma(B_3) + A_1, & \text{if } L(v,3) = 1FH, \text{ and} \\
B_1 + B_2 + \sigma(B_4) + \sigma(B_3) + A_2, & \text{if } L(v,3) = 1FYY.
\end{cases}
\]

Case 5: \(t = 3h + 2 \geq 2 \) and \(L(v,3) = 1F5 \) or 1FH. By Lemma 3.4, \(K_{18h+21} \) contains 6 partial 1-factors \(F_0, F_1, F_2, F_3, F_4 \) and \(F_5 \) each missing exactly the five vertices of \(\{0,1,2,3,4\} \) and \(6h + 2 \) partial 1-factors \(F_6, F_7, \ldots, F_{6h+6} \) and \(F_{6h+7} \) such that each of \(F_2 \) and \(F_{2i+1} \) misses exactly the vertex \(i + 2 \) and contains no edges of \(K_5 \) on \(\{0,1,2,3,4\} \) for each \(i \) where \(3 \leq i \leq 3h + 3 \). Let \(C_1 \) denote a \((15h + 15)\)-cycle on the vertex set \(\{i | 3h + 6 \leq i \leq 18h + 20\} \). Set \(C_2 \) a \((18h + 21)\) cycle on \(Z_{18h+21} \). By Theorem 3.6, the graph \(2K_{18h+21} \) \((C_1 \cup C_2) \) can be partitioned into a collection \(B_2 \) of triples. Let \(B_1 = (\bigcup_{i=0}^{6h+7} a_i \ast F_i) \cup \{(i+2,a_{2i},a_{2i+1})\} 3 \leq i \leq 3h + 3\} \). Set

\[
H = \begin{cases}
B_1 + B_2 + A_0, & \text{if } L(v,3) = 1F5, \text{ and} \\
B_1 + B_2 + A_1, & \text{if } L(v,3) = 1FH.
\end{cases}
\]
Case 6: \(t = 3h + 2 \geq 2 \) and \(L(v, 3) = 1FYY \). By Lemmas 3.1 and 3.4, \(K_{18k+21} \) contains \(6h + 8 \) partial 1-factors \(F_0, F_1, \ldots, F_{6h+6} \) and \(F_{6h+7} \) which satisfy the following properties:

1. for any \(0 \leq i \leq 5 \), \(F_i \) misses exactly the five vertices of \(\{0, 1, 2, 3, 4\} \);
2. for any \(3 \leq i \leq 3h + 2 \), each of \(F_{2i} \) and \(F_{2i+1} \) misses exactly the vertex \(i + 1 \) and contains no edges of \(K_5 \) on \(\{0, 1, 2, 3, 4\} \);
3. each of \(F_{6h+6} \) and \(F_{6h+7} \) misses exactly the vertex 4; and
4. for any \(0 \leq i \leq 6h + 7 \), \(F_i \) contains no edges of \(\{\{5, 6\}, \{4, 5\}, \{4, 6\}\} \).

Let \(B_1 = (\bigcup_{i=0}^4 a_i \ast F_i) \cup (\bigcup_{i=6}^{6h+6} a_{i+2} \ast F_i) \cup (a_6 \ast F_{6h+6}) \cup (a_7 \ast F_{6h+7}) \cup \{i + 1, a_{2i}, a_{2i+1}\} \bigcap \{4 \leq i \leq 3h + 3\} \bigcup \{4, a_0, a_6\}, \{4, a_0, a_7\}, \{4, 5, 6\} \} \), and let \(C_1 \) denote a \((15h + 18)\)-cycle on the vertex set \(\{3i + 5 \leq i \leq 18h + 20\} \bigcup \{5, 6\} \). \(C_2 \) a \((18h + 21)\)-cycle on \(Z_{18k+21} \). By Theorem 3.6, the graph \(2K_{u-v} = (C_1 \cup C_2) \) can be partitioned into a collection \(B_2 \) of triples. Set

\[
H = B_1 + B_2 + A_2.
\]

It can be checked that in each of the above cases, \(3(\mathcal{K}_v \cup K_{u-v}) \cup L(v, 3) - H \) satisfies conditions (1)–(3) of Construction 2.4. This completes the proof. \(\square \)

5. The case \(\lambda = 5 \) and \(v \equiv 2 \pmod{6} \)

In this section, let \(v \equiv 2 \pmod{6} \), \(v \geq 8 \), \(V(K_v) = V(\mathcal{K}_v) = X = \{a_i| 0 \leq i \leq v - 1\} \), and let \((X, A)\) be an MPT(v, 5) with leave \(L(v, 3) = \{\{a_0, a_1\} | 1 \leq i \leq 3\} \bigcup \{\{a_{2i}, a_{2i+1}\} | 2 \leq i \leq v/2 - 1\} \). Let \(u > v \), \(V(K_{u-v}) = Z_{u-v} \), \(Y = X \bigcup Z_{u-v}, X \bigcap Z_{u-v} = \emptyset \) and \(A_3 = \{\{0, a_0, a_1\}, \{1, a_0, a_2\}, \{2, a_0, a_3\}, \{a_1, 1, 2\}, \{a_2, 0, 2\}, \{a_3, 0, 1\}\} \).

Lemma 5.1. Let \(v \equiv 2 \pmod{6} \), \(v \geq 8 \) and \(u \equiv 3 \pmod{6} \). If \(u \geq 2v + 1 \), then an MPT\((v, 5)\) can be embedded in a TS\((u, 5)\).

Proof. Write \(v = 6h + 8 \) and \(u - v = 6t + 7 \). Suppose \(1 \leq h + 1 \leq t \leq 3h + 2 \). By Lemma 3.5, \(K_{u-v} \) contains 5 partial 1-factors \(F_0, F_1, F_2, F_3 \) and \(F \) each missing the three vertices of \(\{0, 1, 2\} \) and \(6h + 4 \) partial 1-factors \(F_4, F_5, \ldots, F_{6h+6} \) and \(F_{6h+7} \) each missing exactly the vertex 2 and containing no edge \(\{0, 1\} \). Suppose \(F = \{2i - 1, 2i\} | 2 \leq i \leq 3t + 3\} \), and let \(B_1 = \{2, 2i - 1, 2i\} | 2 \leq i \leq 3h + 3\} \bigcup \{\bigcup_{i=0}^{4h+2} a_i \ast F_i\} \bigcup \{2, a_2, a_{2i+1}\} | 2 \leq i \leq 3h + 3\} \). Choose differences of \(D(6t + 7, 4) \) to form the following collection \(T \) of difference triples:

\[
\begin{align*}
2\{2t + 1, 2t + 4, 2t + 2\}; & \quad (2t + 1, 2t - 1); \quad (2t + 1, 2t + 3), \\
(2t, 3t - i + 3, 3t - i + 4); & \quad 1 \leq i \leq t - 1, \quad t \geq 2, \\
(2t - 1, t + i + 1, t - i + 2); & \quad 1 \leq i \leq t - 1, \quad t \geq 2.
\end{align*}
\]

From \(T \bigcap \{(2t + 1, 2t + 4, 2t + 2);(2t + 1, 2t + 4, 2t + 2)\} \), choose 5t - 5h - 2 difference triples \(D_1, D_2, \ldots, D_{5t-5h-3} \) and \(D_{5t-5h-2} \). Let \(B_2 = (D_1) + (D_2) + \cdots + (D_{5t-5h-2}) \), \(B_3 = \{0, 2t + 1, 4t + 3\} \bigcup \{0, 2t + 1, 4t + 3\} + i \bigcup 1 \leq i \leq 2t - 2h\} \), the vertex set \(V = \{i, 2t + 1, 4t + 3\} + i \bigcup 1 \leq i \leq 2t - 2h\} \). Clearly there exists a permutation \(\sigma \) of \(Z_{u-v} \) such that \(\sigma(0) = 0, \sigma(2t + 1) = 1, \sigma(4t + 3) = 2 \) and \(\sigma(V) = \{i| 6h + 7 \leq i \leq 6t + 6\} \). Set

\[
H = B_1 + \sigma(B_2) + \sigma(B_3) + A_3.
\]

Then the graph \(5(\mathcal{K}_v \cup K_{u-v}) \cup L(v, 3) - H \) satisfies conditions (1)–(3) of Construction 2.4. The conclusion follows. \(\square \)

Lemma 5.2. Let \(v \equiv 2 \pmod{6} \), \(v \geq 8 \) and \(u \equiv 1 \pmod{6} \). If \(u \geq 2v + 1 \), then an MPT\((v, 5)\) can be embedded in a TS\((u, 5)\).

Proof. Write \(v = 6h + 8 \) and \(u - v = 6t + 5 \). Suppose \(1 \leq h + 1 \leq t \leq 3h + 3 \).

Case 1: \(t = 1 \). By Lemma 3.5, \(2K_{11} \) contains 5 partial 1-factors \(F_0, F_1, F_2, F_3 \) and \(F \) each missing exactly the three vertices of \(\{0, 1, 2\} \) and 4 partial 1-factors \(F_4, F_5, F_6 \) and \(F_7 \) each missing exactly the vertex 2 and containing no edge \(\{0, 1\} \). Choose two difference triples \(\{3, 3, 5\} \) and \((2, 2, 4) \) from \(D(11, 3) \). Suppose \(F = \{2i - 1, 2i\} | 2 \leq i \leq 5\} \), and let \(B_1 = \{2, 2i - 1, 2i\} | 2 \leq i \leq 4\} \bigcup \{2, a_2, a_3\} \bigcup \{2, a_0, a_1\} \bigcup \bigcup_{i=0}^{4h+2} a_i \ast F_i\) and \(B_2 = \{0, 3, 6\} + i | 0 \leq i \leq 1, 5 \leq i \leq 10\} \bigcup \{0, 2, 4\} + i | 0 \leq i \leq 2, 5 \leq i \leq 10\} \). Set

\[
H = A_3 + B_1 + B_2.
\]
Case 2: \(t > 1 \). Let the partial 1-factors \(F_0, F_1, \ldots, F_{4t-7} \) and \(F \) in \(K_{6t+5} \) be similar to that in the proof of Lemma 5.1, and \(B_1 = (\bigcup_{i=0}^{4t-7} a_i \ast F_i) \cup \{(2,2i-1,2i)|2 \leq i \leq 3h+4 \} \cup \{(2,2i,2i+1)|2 \leq i \leq 3h+3 \} \). Choose differences of \(D(6t+5,4) \) to form the following collection \(T \) of difference triples:

\[
\begin{align*}
2\{2t+1,2t+1,2t+3\}; & \quad (2,2t+2,2t+4); \quad (3,2t-3,2t), \\
(2t-2,2t+2,2t+3); & \quad (2i,3t-i+2,3t-i+3): 1 \leq i \leq t-2, \ t \geq 3, \\
(2i-1,t+i+1,t-i+2): & \quad 1 \leq i \leq t-2, \ t \geq 3.
\end{align*}
\]

From \(T \setminus \{(2t+1,2t+1,2t+3);(2t+1,2t+1,2t+3)\} \), choose \(5t-5h-5 \) difference triples \(D_1, D_2, \ldots, D_{5t-5h-6} \) and \(D_{5t-5h-5} \). Let \(B_2 = (D_1) + (D_2) + \cdots + (D_{5t-5h-5}) \), \(B_3 = \{(0,2t+1,4t+4)|2h+2 \leq i \leq 6t+4\} \), \(B_4 = \{(0,2t+1,4t+3)|2t+1 \leq i \leq 6t+4\} \). Clearly \(V_1 \cap V_2 = \emptyset \), so there exists a permutation \(\sigma \) of \(Z_{6t+5} \) such that \(\sigma(V_1) = \{i|3 \leq i \leq 6h+8\} \) and \(\sigma(V_2) = \{i|6h+9 \leq i \leq 6t+4\} \cup \{2\} \). Set

\[
H = A_1 + B_1 + \sigma(B_2) + \sigma(B_3) + \sigma(B_4).
\]

It can be checked that in each of the above cases \(S(\bar{K}_v \setminus K_{6t-5}) \cup L(v,5) - H \) satisfies conditions (1)–(3) of Construction 2.4. The conclusion then follows. \(\square \)

6. Conclusion

Combining Lemmas 1.6, 4.1–4.3, 5.1–5.2, Theorems 1.1, 2.3, and using Construction 2.1, we have completely proved Theorem 1.7, the main theorem of this paper. Based on this result, recently we have completely solved the problem of embedding any MPT\((v,\lambda)\) in an MPT\((u,\lambda)\) in a subsequent paper, and we will continue to consider the embedding problem for simple maximum packings or the packings which are not maximum.

Acknowledgements

The authors would like to thank the referees for some very helpful comments.

References