PhD Qualifying Exam in Numerical Analysis Fall, 2019

(Total of 150 points.)

6.5 - 3

- 1. (10 pts) A preconditioner P of a matrix A is a matrix such that $P^{-1}A$ has a smaller condition number than A. For the linear system $\begin{bmatrix} 1 & 2 \\ 0 & 10^{-20} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 10^{-20} \end{bmatrix}$, can you make it better conditioned? What is your preconditioner for this system? Compare the condition numbers between the old A and new $P^{-1}A$ systems.
- 2. Consider the problem $u''(x) = \lambda u$ for all $x \in (0,1)$, $u'(0) = \sigma$, and u(1) = 0, where λ and σ are constants.
 - (A) (10 pts) For $\lambda = 0$, find an exact solution u(x) of the problem, if it exists. For $\lambda \neq 0$, find an exact solution u(x) of the problem, if it exists.
 - (B) (20 pts) For $\lambda = 0$ and $\sigma = 0$, find a finite-difference (FD) approximation $u_h(x)$ of u(x) with h = 1/4. Determine the error $||u_h(x) u(x)||_{\infty}$ of your $u_h(x)$ with h = 1/4. Determine and prove the convergence order of your FD, i.e., determine α in $||u_h(x) u(x)||_{\infty} = O(h^{\alpha})$.
- 3. Consider the linear system $\overrightarrow{Ax} = \overrightarrow{b}$ where $A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 3 & 0 \\ 1 & 0 & -2 \end{bmatrix}$,

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
, and $\overrightarrow{b} = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$.

(A) (10 pts) Jacobi's Method (JM) written in component form is $x_i^{(k)} = (b_i - \sum_{j=1, j \neq i}^N a_{ij} x_j^{(k-1)})/a_{ii}$. Solve the system by JM to the first 2 iterates and fill your answers in the following table.

Use rational numbers such as $\frac{1}{3}$ NOT 0.333 in the table.

Table. JM Iteration			
k	0	1	2
$x_1^{(k)}$	0		
$x_2^{(k)}$	0		
$x_3^{(k)}$	0		

- (B) (10 pts) Write an algorithm (pseudo code) for JM.
- (C) (10 pts) Show that JM in matrix form is $\vec{x}^{(k)} = -D^{-1}(L + U)\vec{x}^{(k-1)} + D^{-1}\vec{b}$, $k = 1, 2, 3, \cdots$. What are D, L, and U?

3. Minimization problems:

- (A) (10 pts) The change of the function (height) $f(\overrightarrow{x})$ at $\overrightarrow{x} = (x, y) \in R^2$ in the direction $\overrightarrow{p} \in R^2$ is a directional derivative defined as $D_{\overrightarrow{p}}f(\overrightarrow{x}) = \lim_{t\to 0} \frac{f(\overrightarrow{x}+t\overrightarrow{p})-f(\overrightarrow{x})}{t}$, where $\overrightarrow{p} = (p_1, p_2)$ a given unit vector (direction). Show that the minimum value of $D_{\overrightarrow{p}}f(\overrightarrow{x})$ is $-|\nabla f(\overrightarrow{x})|$ and $\overrightarrow{p} = -\nabla f(\overrightarrow{x})/|\nabla f(\overrightarrow{x})|$, where ∇ is the gradient operator.
- (B) (20 pts) The method of gradient (steepest) descent is an iterative process $\overrightarrow{x}_k = \overrightarrow{x}_{k-1} + \alpha_{k-1} \overrightarrow{p}_{k-1}$ of changing $\overrightarrow{x}_{k-1} = (x_{k-1}, y_{k-1})$ by stepping a length α_k in the gradient direction \overrightarrow{p}_{k-1} . Show that the gradient vector $\nabla f(\overrightarrow{x}_0)$ is perpendicular to the tangent vector $\overrightarrow{r}'(t_0)$ to the level curve $f(\overrightarrow{x}) = c$ at $\overrightarrow{x} = \overrightarrow{x}_0 = (x_0, y_0) = \langle x(t_0), y(t_0) \rangle = \overrightarrow{r}'(t_0)$, where $\overrightarrow{r}'(t) = \frac{d}{dt} \langle x(t), y(t) \rangle$. Draw a graph with a mountain, surface, level curve, tangent vector, gradient vector, valley, and all math notations.
- (C) (10 pts) Consider the minimization problem: Minimize $z=f(\overrightarrow{x})=\frac{x^2}{4^2}+y^2, \ \forall \overrightarrow{x}=\langle x,y\rangle\in R^2.$ Use the gradient descent method to find the minimum value of this problem with $\overrightarrow{x}_0=\langle 2,\frac{1}{4}\rangle$ and $\alpha_k=\frac{\sqrt{5}}{4}\ \forall k.$
- (D) (10 pts) Show that \overrightarrow{x}^* minimizes $\phi(\overrightarrow{x}) \iff A\overrightarrow{x}^* = \overrightarrow{b}$, where $A \in R^{N \times N}$ is a symmetric and positive definite matrix and $\phi(\overrightarrow{x}) = \frac{1}{2}\overrightarrow{x}^T A \overrightarrow{x} \overrightarrow{x}^T \overrightarrow{b}$. (Hint: $h(\alpha) = \phi(\overrightarrow{x} = +\alpha \overrightarrow{p})$.)

4. Newton's method finds successively approximations to a root (unknown solution) x^* of a nonlinear equation

$$g(x) = 0, (1)$$

i.e., it iteratively solves the linearized equation

$$g'(x^{(0)})w = g(x^{(0)}), \ w = x^{(0)} - x^{(1)},$$
 (2)

$$g'(x^{(0)})w = \lim_{t \to 0} \frac{g(x^{(0)} + tw) - g(x^{(0)})}{t}, \tag{3}$$

where $x^{(1)}$ is the next iterate (unknown) to be solved with a given $x^{(0)}$, then $x^{(2)}$ is solved with $x^{(1)}$, and so on.

- (A) (10 pts) Under what conditions, show that the rate of convergence of Newton's method is quadratic, i.e., $|x^{(n)} x^*| \le c |x^{(n-1)} x^*|^2$. What is c?
- (B) (10 pts) For the coupled nonlinear system

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 = f_1(x_1, x_2) \\
 a_{21}x_1 + a_{22}x_2 = f_2(x_1, x_2)
\end{cases}$$
(4)

written in the matrix form AX = F with two unknown solutions $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = X$, the linear operator $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ (a matrix), and two nonlinear functions $\begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{bmatrix} = F$, derive the linearized system of (4) in matrix form that corresponds to (2) and (3).

(C) (10 pts) For the nonlinear differential equation (DE)

$$-u''(x) = f(u(x)) = e^{u(x)}$$
 (5)

with an unknown solution u(x), the positive linear operator $-\frac{d^2}{dx^2}$, and the nonlinear functional f(u), derive the linearized DE of (5) that corresponds to (2) and (3). Show that $-\frac{d^2}{dx^2}$ is linear.