On latin cubes with prescribed intersections

Hung-Lin Fu

1. Introduction

A latin cube C of order v is a v-tuple \((L_1, L_2, \ldots, L_v)\) of pairwise disjoint latin squares of order \(v\). Let \(C = (L_1, L_2, \ldots, L_v)\) and \(D = (M_1, M_2, \ldots, M_v)\) be two latin cubes of order \(v\) (with the same entries), then the intersection of \(C\) and \(D\) is defined to be the number

\[|C \cap D| = \sum_{i=1}^{v} |L_i \cap M_i|,\]

where \(|L_i \cap M_i|\) is the number of common entries of \(L_i\) and \(M_i\). Moreover, we define \(J[v]\) as the set of positive integers \(k\) such that there exist two latin cubes of order \(v\) with intersection \(k\), and we define \(I[v] = \{0, 1, 2, \ldots, v^3-14\} \cup \{v^3-12, v^3-8, v^3\}\).

In [3] results on \(J[v]\) were used in solving the intersection problem for Steiner quadruple systems of order \(4v\), where \(v\) is the order of a Steiner quadruple system, and \(v \geq 10\). Some of the results concerning \(J[v]\) which were obtained in that paper are the following:

1. \(J[10] \supseteq I[10] \setminus \{10^3-21, 10^3-14\}\).
2. \(J[v] \supseteq I[v] \setminus \{v^3-21, v^3-14\}\) for every even \(v \geq 20\).

In this paper we prove that \(J[v] = I[v]\) for every \(v \geq 24\) and \(J[v] \supseteq I[v] \setminus \{v^3-14\}\) when \(20 \leq v \leq 23\).

2. Main theorems

It is easy to show that the intersection of two latin squares of order \(v\) cannot be \(v^2-5, v^2-3, v^2-2,\) and \(v^2-1\). Hence we have the following lemma.

Lemma 2.1. \(J[v] \subseteq I[v]\) for every order \(v\).

Proof. It is well known that a latin cube is equivalent to a 3-quasigroup \(Q\) [2], and the set \(\{(x, y, z) \mid (x, y, z) \in Q\}\), with one component fixed, corresponds to a latin square. Since the intersections of two latin squares cannot be \(v^2-5, v^2-3, v^2-2,\) and \(v^2-1\), we conclude that the intersections of two latin cubes of order \(v\) cannot be \(v^3-13, v^3-11, v^3-10, v^3-9, v^3-7, \ldots, v^3-1\). This implies that \(J[v] \subseteq I[v]\).

Lemma 2.2. \(v^3-21 \in J[v]\) for every \(v \geq 6\).
Proof. It is well known [1] that the partial latin square A of order 3 (Figure 2.1) can be embedded in a latin square $L = \ell_{i,j}$ of order $v \geq 6$. Let $M = [m_{i,j}]$ be a latin square of order v containing the subsquare B (Figure 2.1) in the upper-left corner. We construct a latin cube $C = (L_1, L_2, ..., L_v)$ by letting $L_1 = L_2 = \ell_{i,j}^{t}$, $t = 2, 3, ..., v$, $\ell_{i,j}^{t} = (\ell_{i,j})^{t}$, and $\alpha_{t} = \left(m_{1,1}^{t} m_{1,2}^{t} \cdots m_{1,v}^{t}\right)$. It is easy to see that C is a latin cube which contains the partial latin cube D (Figure 2.2) in the upper-left corner of L_1, L_2, L_3. We can replace D by D' (Figure 2.2), and denote the new latin cube as C'. The theorem then follows as $|C \cap C'| = v^3 - 21$.

![Figure 2.1](image1.png)

![Figure 2.2](image2.png)

Lemma 2.3. $v^3 - 14 \in J[v], v \geq 24$.

172
Proof. Since the partial latin cube E (Figure 2.3) can be embedded in a latin cube L of order 12 (Figure 2.4), and a latin cube of order n can be embedded in a latin cube of order $m \geq 2n$ [3], then the partial latin cube E can be embedded in a latin cube of any order $v \geq 24$. We can replace E by E' (Figure 2.3), this concludes the proof.

$$E = \begin{array}{ccc}
1 & 2 & \\
2 & 1 & 3 \\
3 & 2 & \\
\end{array} \hspace{1cm} E' = \begin{array}{ccc}
2 & 1 & \\
1 & 3 & 2 \\
2 & 3 & \\
\end{array}$$

Figure 2.3

$$A_1 \begin{array}{cccccc}
1 & 2 & 4 & 3 & 5 & 6 \\
2 & 1 & 3 & 5 & 6 & 4 \\
4 & 3 & 2 & 6 & 1 & 5 \\
3 & 5 & 6 & 1 & 4 & 2 \\
5 & 6 & 1 & 4 & 2 & 3 \\
6 & 4 & 5 & 2 & 3 & 1 \\
\end{array} \hspace{1cm} A_4 \begin{array}{cccccc}
5 & 6 & 3 & 1 & 4 & 2 \\
3 & 5 & 6 & 4 & 2 & 1 \\
1 & 4 & 5 & 2 & 3 & 6 \\
4 & 2 & 1 & 5 & 6 & 3 \\
6 & 1 & 2 & 3 & 5 & 4 \\
2 & 3 & 4 & 6 & 1 & 5 \\
\end{array}$$

$$A_2 \begin{array}{cccccc}
2 & 1 & 5 & 4 & 6 & 3 \\
1 & 3 & 2 & 6 & 4 & 5 \\
6 & 2 & 3 & 1 & 5 & 4 \\
5 & 6 & 4 & 2 & 3 & 1 \\
3 & 4 & 6 & 5 & 1 & 2 \\
4 & 5 & 1 & 3 & 2 & 6 \\
\end{array} \hspace{1cm} A_5 \begin{array}{cccccc}
12 & 10 & 2 & 5 & 9 & 1 \\
6 & 4 & 7 & 2 & 5 & 9 \\
3 & 5 & 1 & 4 & 6 & 2 \\
7 & 3 & 5 & 12 & 2 & 4 \\
1 & 8 & 4 & 6 & 3 & 5 \\
5 & 2 & 6 & 1 & 4 & 3 \\
\end{array}$$
$$L = (L_1, L_2, \ldots, L_{12}), \ B_k(i, j) = \begin{cases} A_k(i, j) + n, & \text{if } A_k(i, j) \leq n, \\ A_k(i, j) - n, & \text{if } A_k(i, j) > n. \end{cases}$$

$$L_k = \begin{array}{cc}
A_k & B_k \\
B_k & A_k
\end{array}, \quad k = 1, 2, 3, 4.$$

$$L_5 = \begin{array}{cc}
A_5 & B_5 \\
A_6 & B_6
\end{array}$$

$$L_6 = \begin{array}{cc}
A_6 & B_6 \\
A_5 & B_5
\end{array}$$

$$L_7 = \begin{array}{cc}
B_5 & A_6 \\
B_8 & A_8
\end{array}$$

$$L_8 = \begin{array}{cc}
B_5 & A_6 \\
B_5 & A_5
\end{array}$$

$$L_{k+8} = \begin{array}{cc}
B_k & A_k \\
A_k & B_k
\end{array}, \quad k = 1, 2, 3, 4.$$
Lemma 2.4. \(J[10] \supseteq I[10] \setminus \{10^3-14\} \).

Proof. By Lemma 2.2 and the results obtained in [3].

For convenience of the following lemma, we denote the set \(\{a+b \mid a \in A \text{ and } b \in B\} \) by \(A + B \).

Lemma 2.5. \(J[v] \supseteq I[v] \setminus \{v^3-14\} \) for every \(v \), \(20 \leq v \leq 39 \).

Proof. Since a latin cube of order \(n \) can be embedded in a latin cube of order \(m \geq 2n \) [3], let \(C \) be a latin cube of order \(v \), \(20 \leq v \leq 39 \), containing a subcube \(B \) of order 10. \(B \) can, of course, be removed and replaced by any other latin cube on the same symbols. Now the following three parts of \(C \) can be permuted independently:

1. the entries 1,2,...,10 in the right-lower corner of \(L_1,L_2,...,L_{10} \),
2. the entries 1,2,...,10 but not in \(B \) or (1),
3. the entries 11,12,...,\(v \).

By applying the permutation to (1), (2), and (3) independently, we have
\[
J[v] \supseteq J[10] + \{0,10(v-10),20(v-10),...,80(v-10),100(v-10)\} + \{0,(v-10)v,2(v-10)v,...,8(v-10)v,10(v-10)v\} + \{0,v^2,2v^2,...,(v-12)v^2,(v-10)v^2\}.
\]
Since \(20 \leq v \leq 39 \), it follows by Lemma 2.4 that \(J[v] \supseteq I[v] \setminus \{v^3-14\} \).

Lemma 2.6. If \(J[v] \supseteq I[v] \setminus \{v^3-14\} \), then \(J[2v] \supseteq I[2v] \setminus \{(2v)^3-14\} \), and \(J[2v+1] \supseteq I[2v+1] \setminus \{(2v+1)^3-14\} \), for every \(v \geq 10 \).

Proof. It is similar to Lemma 2.5.

Lemma 2.7. \(J[v] \supseteq I[v] \setminus \{v^3-14\} \) for every \(v \geq 20 \).

Proof. By Lemma 2.5, and 2.6.

Now we have the following theorem.

Theorem 2.8. \(J[v] = I[v] \) for every \(v \geq 24 \).

Proof. It is a direct result of Lemmas 2.3 and 2.7.
References

Department of Algebra, Combinatorics and Analysis
Auburn University
Auburn, Alabama
U.S.A.