MULTICOLORED PARALLELISMS OF ISOMORPHIC SPANNING TREES

S. AKBARI†, A. ALIPOUR†, H. L. FU‡, AND Y. H. LO‡

Abstract. A subgraph in an edge-colored graph is multicolored if all its edges receive distinct colors. In this paper, we prove that a complete graph on 2^m ($m \neq 2$) vertices K_{2^m} can be properly edge-colored with $2^m - 1$ colors in such a way that the edges of K_{2^m} can be partitioned into m multicolored isomorphic spanning trees.

Key words. complete graph, multicolored tree, parallelism

AMS subject classifications. 05B15, 05C05, 05C15, 05C70

DOI. 10.1137/S0895480104446015

A spanning subgraph of a graph G is a subgraph H with $V(H) = V(G)$. A proper k-edge coloring of a graph G is a mapping from $E(G)$ into a set of colors $\{1, \ldots, k\}$ such that incident edges of G receive distinct colors. An h-total-coloring of a graph G is a mapping from $V(G) \cup E(G)$ into a set of colors $\{1, \ldots, h\}$ such that (i) adjacent vertices in G receive distinct colors, (ii) incident edges in G receive distinct colors, and (iii) any vertex and its incident edges receive distinct colors. The edge chromatic number of a graph G is the minimum number k for which G has a proper k-edge coloring. Throughout this paper K_m and $K_{m,n}$ denote the complete graph of order m and the complete bipartite graph with partite sets of sizes m and n, respectively. It is well known that the edge chromatic number of K_m is m if m is odd, and $m - 1$ if m is even [7, p. 15]. Assume that m is a natural number. For any integer i we denote the residue of i modulo m in the set $\{1, \ldots, m\}$ by $[i]_m$. The following result is known.

Lemma 1 (see [7, p. 16]). If m is an odd positive integer, then K_m has an m-total coloring.

A Latin square of order m is an $m \times m$ array of m symbols in which every symbol occurs exactly once in each row and column of the array. A Room square of side $2m - 1$ is a $(2m - 1) \times (2m - 1)$ array whose cells are empty or contain an unordered pair of distinct integers chosen from $R = \{1, \ldots, 2m\}$, such that the entries of a given row contain every member of R precisely once, and similarly for columns, and the array contains every unordered pair of members of R precisely once. Room squares have been found for all odd $2m - 1 \geq 7$ [2, p. 239]. An example of a Room square of side 7 is shown in Table 1.

A subgraph in an edge-colored graph is said to be multicolored if no two edges have the same color. Using a Room square of side $2m - 1$ one may obtain a proper
edge coloring of K_{2m} with $2m - 1$ colors in which all edges can be partitioned into $2m - 1$ multicolored perfect matchings. For example, using the rows of Table 1 we give a proper edge coloring of K_8 with 7 colors. We denote the vertices of K_8 by $1, \ldots, 8$. In Table 1, if rs appears in the ith row, then we color the edge rs with color i. For instance, the edges 47, 16, 38, 25 are colored with color 4. Each column in Table 1 corresponds to a multicolored perfect matching of K_8. In a recent paper [1] the existence of the multicolored matchings in an arbitrary edge-colored complete graph has been studied. A Latin square of order m corresponds to a proper edge coloring of $K_{m,m}$ with m colors. Indeed if $L = (L_{ij})$ is a Latin square of order m and $\{u_1, \ldots, u_m\}$ and $\{v_1, \ldots, v_m\}$ are two parts of $K_{m,m}$, then we color the edge u_iv_j with L_{ij}. Since L has m symbols, we have an m-edge coloring of $K_{m,m}$, and since every symbol occurs exactly once in each row and each column of L, the edge coloring is proper. Also the existence of two orthogonal Latin squares of order m corresponds to a proper edge coloring of $K_{m,m}$ with m colors for which all edges can be partitioned into m multicolored perfect matchings. For example, suppose that $L = (L_{ij})$ and $R = (R_{ij})$ are two orthogonal Latin squares of order m with symbols of the set $\{1, \ldots, m\}$, and $\{u_1, \ldots, u_m\}$ and $\{v_1, \ldots, v_m\}$ are two parts of $K_{m,m}$. As we saw before, the function c, where $c(u_iv_j) = L_{ij}$, is a proper m-edge coloring of $K_{m,m}$. For any r, $1 \leq r \leq m$, let M_r be the set of all edges u_iv_j such that $R_{ij} = r$. Obviously $\{M_1, \ldots, M_m\}$ is an edge partition of $E(K_{m,m})$. Since the symbol r occurs exactly once in each row and each column of R, M_r is a perfect matching, and since L and R are orthogonal, if $R_{ij} = r$, then the symbols L_{ij} are distinct and we conclude that M_r is multicolored. There is a classic result which says that for any natural number m, $m \neq 2, 6$, there exist two orthogonal Latin squares of order m; see [3].

We say that the complete graph K_{2m} admits a multicolored tree parallelism (MTP) if there exists a proper edge coloring of K_{2m} with $2m - 1$ colors for which all edges can be partitioned into m isomorphic multicolored spanning trees. It is clear that the complete graph K_4 does not admit an MTP. We note here that such a partition of the edges of K_{2m} can be viewed as a parallelism as defined in [5] by Cameron, with an additional property due to edge colors. In fact, finding a partition as obtained above corresponds to an arrangement of the edges of K_{2m} into an array of $2m - 1$ rows and m columns such that each row contains the edges with the same color which form a perfect matching and the edges in each column form a multicolored spanning tree of K_{2m}; moreover, all the m spanning trees are isomorphic. Therefore, the partition creates a double parallelism of K_{2m}, one from the rows of the perfect matchings and the other from the columns of the edge disjoint isomorphic spanning trees. The following result has been proven in [6].

Theorem A (see [6]). If $m \neq 1, 3$ and K_{2m} admits an MTP, then for any $r \geq 1$, $K_{2r,m}$ admits an MTP.

There exist three interesting conjectures on the edge partitioning of the complete graphs into multicolored spanning trees.

<table>
<thead>
<tr>
<th></th>
<th>26</th>
<th>34</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>34</td>
<td>46</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>57</td>
<td>68</td>
<td>24</td>
</tr>
<tr>
<td>47</td>
<td>16</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>58</td>
<td>23</td>
<td>14</td>
<td>67</td>
</tr>
<tr>
<td>12</td>
<td>78</td>
<td>56</td>
<td>34</td>
</tr>
<tr>
<td>36</td>
<td>45</td>
<td>27</td>
<td>18</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>35</td>
<td>46</td>
<td>12</td>
</tr>
<tr>
<td>c_2</td>
<td>24</td>
<td>15</td>
<td>36</td>
</tr>
<tr>
<td>c_3</td>
<td>25</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>c_4</td>
<td>26</td>
<td>13</td>
<td>45</td>
</tr>
<tr>
<td>c_5</td>
<td>14</td>
<td>23</td>
<td>56</td>
</tr>
</tbody>
</table>

Fig. 1.

Constantine’s Conjecture (weak version; see [6]). For any natural number m, $m > 2$, K_{2m} admits an MTP.

Brualdi–Hollingsworth Conjecture (see [4]). If $m > 2$, then in any proper edge coloring of K_{2m} with $2m - 1$ colors, all edges can be partitioned into m multicolored spanning trees.

In [4] it was proved that in any proper edge coloring of K_{2m} ($m > 2$) with $2m - 1$ colors there are at least two edge disjoint multicolored spanning trees.

Constantine’s Conjecture (strong version; see [6]). If $m > 2$, then in any proper edge coloring of K_{2m} with $2m - 1$ colors, all edges can be partitioned into m isomorphic multicolored spanning trees.

The main goal of this paper is to prove the first conjecture.

Example 1. The complete graph K_6 admits an MTP. To see this consider the complete graph K_6 with the vertex set $\{1, \ldots, 6\}$. Table 2 gives a proper edge coloring of K_6 with colors c_1, \ldots, c_5 as well as an MTP for it. The ith row of this table is the set of all edges with color c_i. Each column denotes the edges of a multicolored spanning tree. Figure 1 shows that the spanning trees T_1, T_2, T_3 are isomorphic.

In [6] it has been shown that K_8 admits an MTP.

Using the software Gap, Peter Cameron found a decomposition of $K_{6,6}$ into six isomorphic multicolored graphs $K_{1,3} \cup 3K_2 \cup 2K_1$. In the next lemma, using Cameron’s decomposition we find an MTP for K_{12}.

Lemma 2. The complete graph K_{12} admits an MTP.

Proof. Consider the complete graph K_{12} with the vertex set $\{a_1, \ldots, a_m, v_1, \ldots, v_6\}$. Table 3 gives a proper edge coloring of K_{12} with colors c_1, \ldots, c_{11} as well as an MTP for it. The ith row of this table is the set of all edges with color c_i. Each column denotes the edges of a multicolored spanning tree. Note that the first six rows of the table determine a decomposition of $K_{6,6}$ into six multicolored subgraphs isomorphic to $K_{1,3} \cup 3K_2 \cup 2K_1$. \(\square \)

Now, we are ready to prove our main result.

Theorem. For $m \neq 2$, K_{2m} admits an MTP.

Proof. First suppose that m is an odd integer. Consider the complete graph K_{2m} defined on the set $A \cup B$ where $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_m\}$. For
convenience, let G and H be the complete graphs on the sets A and B, respectively. Since m is odd, G has a total coloring π which uses m colors, $1, \ldots, m$. Now, define an edge-coloring c of K_{2m} as follows:

(a) For each edge $a_ia_k \in E(G)$, let $c(a_ia_k) = \pi(a_ia_k)$.
(b) For each edge $b jb_k \in E(H)$, let $c(b jb_k) = \pi(a_ia_k)$.
(c) For each edge $a.ib_i, 1 \leq i \leq m$, let $c(a_i b_i) = \pi(a_i)$.
(d) For each edge $a_i b_j, j \neq k$, let $c(a_i b_k) = [k - j]_m + m$.

Clearly, c is a proper $(2m - 1)$-edge-coloring of K_{2m}. It is left to decompose K_{2m} into m multicolored isomorphic spanning trees. First, for each $i \in \{1, \ldots, m\}$, let T_i be defined on the set $A \cup B$ and $E(T_i) = \{a_ia_{i+2t-1}, b_ib_{i+2t-1}, a_{i+1}b_{i+2t}\}$, $a_{i+1}b_{i+2t} \in E$ for $1 \leq i \leq m - 2$ and T_i is a multicolored spanning tree, and all the T_i's are isomorphic.

Now, if m is not an odd integer, then $2m = 2m'$ where $t \geq 2$ and m' is odd. In the case where $m' = 1$, t must be at least 3. Then it is a direct consequence of Theorem A. Assume $m' \geq 3$. Thus $K_{2m'}$ admits an MTP by Theorem A except when $m' = 3$ and $t = 2$. Since this case can be handled by Lemma 2, we conclude the proof.

Acknowledgments. The first two authors are very grateful to professor Peter Cameron for his fruitful discussions, and we appreciate the helpful comments of the referees.

REFERENCES