THE OPTIMAL PEBBLING NUMBER OF THE CATERPILLAR

Chin-Lin Shiue and Hung-Lin Fu

Abstract. Let G be a simple graph. If we place p pebbles on the vertices of G, then a pebbling move is taking two pebbles off one vertex and then placing one on an adjacent vertex. The optimal pebbling number of G, $f'(G)$, is the least positive integer p such that p pebbles are placed suitably on vertices of G and for any target vertex v of G, we can move one pebble to v by a sequence of pebbling moves. In this paper, we find the optimal pebbling number of the caterpillars.

1. INTRODUCTION

Suppose p pebbles are distributed onto the vertices of G; then we have a so-called distribution δ where we let $\delta(v)$ be the number of pebbles distributed to $v \in V(G)$ and $\delta(H) = \sum_{v \in V(H)} \delta(v)$ for each induced subgraph H of G. Note that now $\delta(G) = p$.

A pebbling move consists of moving two pebbles from one vertex and then placing one pebble at an adjacent vertex. If a distribution δ let us move, for any vertex v, at least one pebble to v by applying pebbling moves repeatedly (if necessary), then δ is called a pebbling of G. Suppose δ is a distribution of G and H is an induced subgraph of G and v is a vertex in H. Let $\delta(H, v)$ denote the maximum number of pebbles which can be moved to v by applying pebbling moves on H. Therefore, for each $v \in V(G)$ $\delta(G, v) > 0$ if δ is a pebbling of G. The pebbling number $f(G)$ of a graph G is defined as the minimum number of pebbles p such that any distribution with p pebbles is a pebbling of G. The problem of pebbling graph was first proposed by M. Saks and J. Lagarias [1] as a tool for solving a number theoretic problem posed by Lemke and Kleitman [6], and some excellent results have been obtained, see [1, 2, 3, 5, 8, 12].

Received November 7, 2006, accepted August 23, 2007.
Communicated by Xu-Ding Zhu.
2000 Mathematics Subject Classification: 05C05.
Key words and phrases: Optimal pebbling, Caterpillar.
Motivated by the study of pebbling number, the notion of optimal pebbling was introduced later by L. Pachter et al. [10]. The optimal pebbling number of G, $f'(G)$, is $\min\{\delta(G) | \delta$ is a pebbling of $G\}$, and a distribution δ is an optimal pebbling of G if δ is a pebbling of G such that $\delta(G) = f'(G)$. First, L. Pachter et al. found the optimal pebbling number for the path.

Theorem 1.1. [10]. Let P be a path of order $3t+r$, i.e., $|V(P)| = 3t + r$, where $0 \leq r < 3$. Then $f'(P) = 2t + r$. Later, several results have been obtained.

Theorem 1.2. [11]. $f'(C_n) = f'(P_n)$.

Theorem 1.3. [11]. For any graphs G and H, $f'(G \times H) \leq f'(G)f'(H)$.

Theorem 1.4. [9] $f'(Q_n) = \left(\frac{4}{3}\right)n + O(\log n)$. Besides, Fu and Shiue devised a polynomial algorithm to determine the optimal pebbling number of the complete m-ary tree [4]. With regard to the complexity of determining the pebbling number, Milan and Clark showed that deciding whether $f'(G) \leq k$ for a graph G and an integer k is NP-complete [7]. This says that to determine the optimal pebbling number for a graph is difficult.

In order to find the optimal pebbling number of the caterpillar, we introduce the notion of weighted pebbling. Let α be a weighted function mapping from $V(G)$ into the set of positive integers. If δ is a distribution of G and $\delta(G, v) \geq \alpha(v)$ for every vertex v, then δ is called an α-weighted pebbling of G. In what follows, we call α a pebbling type of G and the optimal α-weighted pebbling number of G, $f'_\alpha(G)$, is $\min\{\delta(G) | \delta$ is an α-weighted pebbling of $G\}$. Clearly, if $\alpha(v) = 1$ for each $v \in V(G)$, then $f'_\alpha(G) = f'(G)$. In this paper, we shall determine the optimal pebbling number for a graph is difficult.

2. **Main Result**

A tree T is called a caterpillar if the deletion of all pendent vertices of the tree results in a path P'. For convenience, we shall call a path P with maximum length which contains P' a body of the caterpillar, and all the edges which are incident to pendent vertices are the legs of the caterpillar T. Furthermore, the vertex $v \in V(P)$ is a joint of T provided that $\deg_T(v) \geq 3$ or v is adjacent to the end vertices, see Figure 1 for an example.

Now, we are ready to prove the first lemma. First, we need the following facts. Since they are easy to see, we omit their proofs

Fact 1. Let T be a tree and δ be a distribution of T, and let v be a pendent vertex of T which is adjacent to u. If δ^* is a distribution of $T - v$ defined by
\[
\delta^*(u) = \delta(u) + \left\lfloor \frac{\delta(v)}{2} \right\rfloor \quad \text{and} \quad \delta^*(w) = \delta(w) \quad \text{for each} \ w \in V(T) - \{u, v\}, \text{then} \\
\delta^*(T - v, w) = \delta(T, w) \quad \text{for each} \ w \in V(T) - \{v\}.
\]

Fig. 1. A caterpillar with 5 joints.

Fact 2. Let \(G \) be a graph, and let \(\delta_1 \) and \(\delta_2 \) are two distributions of \(G \). If \(\delta_1(v) \geq \delta_2(v) \) for each \(v \in V(G) \), then \(\delta_1(G, v) \geq \delta_2(G, v) \) for each \(v \in V(G) \).

The following lemma provides a recursive step to show that the problem of finding the optimal pebbling number of a caterpillar \(T \) is equivalent to the problem of finding the optimal \(\alpha \)-weighted pebbling number of a body of \(T \) for some type \(\alpha \).

Lemma 2.1. Let \(T \) be a tree, and let \(v \) be a pendant vertex of \(T \) which is adjacent to \(u \). If \(\alpha \) is a pebbling type of \(T \) satisfying \(\alpha(v) = 1 \) and \(\beta \) is a pebbling type of \(T - v \), defined by \(\beta(u) = \max \{1, \alpha(u)\} \) and \(\beta(w) = \alpha(w) \) for \(w \in V(T) - \{u, v\} \) then \(f^*_\alpha(T) = f^*_\beta(T - v) \).

Proof. Let \(\delta^* \) be an optimal \(\beta \)-weighted pebbling of \(T - v \). Then we choose a distribution \(\delta \) of \(T \) such that \(\delta(u) = 0 \) and \(\delta(w) = \delta^*(w) \) for each \(w \in V(T) - \{v\} \). Clearly, \(\delta(T) = \delta^*(T - v) = f^*_\beta(T - v) \) and \(\delta(T - v, w) = \delta^*(T - v, w) \geq \beta(w) = \alpha(w) \) for each \(w \in V(T) - \{v\} \). Since \(\delta(T - v, u) = \delta^*(T - v, u) \geq \beta(u) \geq 2 \), we have \(\delta(T, v) = \delta(v) + \left\lfloor \frac{\delta(T - v, w)}{2} \right\rfloor \geq \left\lfloor \frac{\beta(u)}{2} \right\rfloor \geq 1 = \alpha(v) \). This implies that \(\delta \) is an \(\alpha \)-weighted pebbling of \(T \) and it follows that \(f^*_\alpha(T) \leq f^*_\beta(T - v) \).

To prove that \(f^*_\alpha(T) \geq f^*_\beta(T - v) \), let \(\delta \) be an optimal \(\alpha \)-weighted pebbling of \(T \) and \(\delta^* \) be a distribution of \(T - v \) such that \(\delta^*(u) = \delta(u) + \delta(v) \) and \(\delta^*(w) = \delta(w) \) for each \(w \in V(T - v) - \{u\} \). Clearly, \(\delta^*(T - v) = \delta(T) = f^*_\alpha(T) \). By Fact 1 and Fact 2, we have

\[
\delta^*(T - v, w) \geq \delta(T, w) \geq \alpha(w) \quad \text{for each} \ w \in V(T - v).
\]

Since \(\beta(w) = \alpha(w) \) for each \(w \in V(T - v) - \{u\} \), \(\delta^* \) will be a \(\beta \)-weighted pebbling as long as \(\delta^*(T - v, u) \geq \beta(u) \).

First, if \(\alpha(u) \geq 2 \) then \(\beta(u) = \alpha(u) \). By \((*) \), \(\delta^*(T - v, u) \geq \delta(T, u) \geq \alpha(u) = \beta(u) \). On the other hand, \(\alpha(u) \) must be 1 and \(\beta(u) = 2 \) by the hypothesis. By the definition of \(\delta^* \), if \(\delta(v) \geq 2 \) or \(\delta(T - v, u) \geq 2 \) then \(\delta^*(T - v, u) = \delta(T - v, u) + \delta(v) \geq 2 = \beta(u) \). Now, if \(\delta(T - v, u) = 0 \), then there are at least two pebbles on \(v \) in the distribution \(\delta \), i.e., \(\delta(v) \geq 2 \). Finally, if \(\delta(T - v, u) = 1 \)
then $\delta(v) \geq 1$. For otherwise, there is no way to move a pebble to v by using the distribution δ and pebbling moves. Again, by the definition of δ^*, we have $\delta^*(T - v, u) = \delta(T - v, u) + \delta(v) \geq 2 = \beta(u)$. This concludes the proof.

Proposition 2.2. Let T be a caterpillar of order $n \geq 3$ and P be a body of T. If α is a pebbling type of P defined by $\alpha(v) = 2$ provided that v is a joint of T and $\alpha(v) = 1$ otherwise. Then $f'(T) = f'_\alpha(P)$.

Proof. This is a direct consequence of Lemma 2.1, by adding legs to P repeatedly.

In what follows, we try to find an explicit formula for finding the optimal α-weighted pebbling of a path P with $\alpha(v) = 1$ or 2 for each $v \in V(P)$. Therefore, the optimal pebbling of a caterpillar can be obtained accordingly.

Throughout the rest of this paper, T is a caterpillar, P is a body of T and α is a pebbling type of P which is defined as in Proposition 2.2. Moreover, we let $S_1 = \{v \in V(P)|\delta(v) = 0 \text{ and } \delta(P, v) = 1\}$ where δ is a distribution of P. Then the following fact is obvious.

Fact 3. Let δ be a distribution of P. If $v \in S_1$ then there exists exactly one vertex u adjacent to v which satisfies the inequalities $2 \leq \delta(P, u) \leq 3$.

We start with finding a good lower bound for $f'_\alpha(P)$.

Proposition 2.3. If δ is an α-weighted pebbling of P, then $\delta(P) \geq |V(P)| - \lfloor \frac{1}{2}|S_1|\rfloor$.

Proof. Since $\alpha(v) \geq 1$, it is easy to see that the lemma holds for $|V(P)| \leq 3$. Let δ be an α-weighted pebbling of P, and let $S_0 = \{v \in V(P)|\delta(v) = 0\}$. Note that $\delta(P, v) \geq 2$ for each $v \in S_0 - S_1$. Hence, we have

$$
\sum_{v \in S_0} \delta(P, v) \geq |S_1| + 2|S_0 - S_1| = 2|S_0| - S_1.
$$

(1)

Let $P = v_1v_2 \cdots v_n$ where $n > 3$. For $i = 1, 2, \cdots, n$, we define the subpath $L_i = v_1v_2 \cdots v_i$ and the subpath $R_i = v_i v_{i+1} \cdots v_n$. For convenience, we denote $\delta(L_i, v_i)$ by $\ell(v_i)$ and $\delta(R_i, v_i)$ by $r(v_i)$ for $1 \leq i \leq n$. Then it is easy to see that $\ell(v_1) = \delta(v_1)$, $r(v_n) = \delta(v_n)$, $\ell(v_i) = \delta(v_i) + \lfloor \frac{\ell(v_{i+1})}{2} \rfloor$ for $2 \leq i \leq n$, and $r(v_i) = \delta(v_i) + \lfloor \frac{r(v_{i+1})}{2} \rfloor$ for $1 \leq i \leq n - 1$. This implies that $\delta(P, v) = \ell(v) + r(v)$ if $\delta(v) = 0$. So, we have

$$
\sum_{v \in S_0} \delta(P, v) = \sum_{v \in S_0} \ell(v) + \sum_{v \in S_0} r(v).
$$
Now, we will prove that \(\sum_{v \in S_0} \ell(v) \leq \delta(P) - |V(P)| + |S_0| \). Let \(s \) be a positive number. We define \(\phi_0(s) = s \) and \(\phi_i(s) = \left\lfloor \frac{\phi_{i-1}(s)}{2} \right\rfloor \) for each positive integer \(i \).

Clearly, \(\sum_{i=1}^{t} \phi_i(s) \leq s - 1 \) for any positive integer \(t \).

Consider the subpath \(P'' = v_{k+1}v_{k+2} \cdots v_{k+\ell}v_{k+\ell+1} \cdots v_{k+\ell + m} \), which satifies that \(\delta(v_{k+i}) \geq 1 \) for \(1 \leq i \leq \ell \) and \(v_{k+\ell+j} \in S_0 \) for \(1 \leq j \leq m \). Since \(\delta(v_{k+\ell+j}) = 0 \) for \(1 \leq j \leq m \), we have

\[
\ell(v_{k+\ell+j}) = \phi_j(\ell(v_{k+\ell})) \text{ for } 1 \leq j \leq m.
\]

By (2), we also have

\[
\ell(v_{k+j}) = \phi_1(\ell(v_{k+j-1}))+\delta(v_{k+j}) \leq \ell(v_{k+j-1})-1+\delta(v_{k+j}) \text{ for } 2 \leq j \leq \ell.
\]

By (3), we have

\[
\phi_{m+1}(\ell(v_{k+\ell})) = \phi_1(\phi_m(\ell(v_{k+\ell}))) = \phi_1(\ell(v_{k+\ell+m})).
\]

By combining (2) and (4), we obtain

\[
\sum_{j=1}^{m+1} \phi_j(\ell(v_{k+\ell})) \leq \ell(v_{k+\ell}) - 1
\]

\[
\leq \ell(v_{k+\ell-1}) - 1 + \delta(v_{k+\ell}) - 1
\]

\[
= \ell(v_{k+\ell-2}) - 1 + \delta(v_{k+\ell-1}) - 1 + \delta(v_{k+\ell}) - 1
\]

\[
\vdots
\]

\[
\leq (\ell(v_{k+1}) - 1) + \sum_{j=2}^{\ell} (\delta(v_{k+j}) - 1).
\]

Also, by Combining (3) and (5), we have

\[
\sum_{v \in V(P'') \cap S_0} \ell(v) = \sum_{j=1}^{m} \ell(v_{k+\ell+j})
\]

\[
= \sum_{j=1}^{m} \phi_j(\ell(v_{k+\ell})) = \sum_{i=1}^{m+1} \phi_j(\ell(v_{k+\ell})) - \phi_{m+1}(\ell(v_{k+\ell}))
\]

\[
\leq (\ell(v_{k+1}) - 1) - \phi_1(\ell(v_{k+\ell+m})) + \sum_{j=2}^{\ell} (\delta(v_{k+j}) - 1).
\]
If \(k = 0 \) then \(\ell(v_{k+1}) = \ell(v_1) = \delta(v_1) = \delta(v_{k+1}) \), and so we have

\[
\sum_{v \in V(P_1') \cap S_0} \ell(v) \leq -\phi_1(\ell(u_1)) + \sum_{v \in V(P_1')} (\delta(v) - 1) = -\phi_1(\ell(u_1)) + \sum_{v \in V(P_1') \cap S_0} (\delta(v) - 1).
\]

Otherwise, \(k \geq 1 \) then \(\ell(v_{k+1}) = \phi_1(\ell(v_k) + \delta(v_{k+1})) \). This implies that

\[
\sum_{v \in V(P_1') \cap S_0} \ell(v) = \phi_1(\ell(v_k)) - \phi_1(\ell(v_{k+1})) + \sum_{v \in V(P_1') \cap S_0} (\delta(v) - 1). \quad (6')
\]

Let \(P = P_0 \sim P_1' \sim P_1 \sim P_2' \sim \cdots \sim P_{m-1}' \sim P_m' \sim P_m \) where \(P_i' \) is the maximal subpath such that for each vertex \(v \in V(P_i') \), \(\delta(v) \geq 1 \) for \(1 \leq i \leq m \).

Note that \(P_0 = \emptyset \) if \(v_1 \in V(P_1') \) and \(P_m = \emptyset \) if \(v_m \in V(P_m') \). We also let \(u_i \) be the rightmost vertex of \(P_i \) for \(1 \leq i \leq m \). Obviously, if \(P_0 \neq \emptyset \), then we have

(i) \(\ell(u_0) = 0 \) and \(\sum_{v \in V(P_0)} \ell(v) = 0 \);

and by combining (6), (6') and (i), we obtain

(ii) \[
\sum_{v \in V(P_1')} \ell(v) \leq -\phi_1(\ell(u_1)) + \sum_{v \in V(P_1')} (\delta(v) - 1) \quad \text{and} \quad \sum_{v \in V(P_1')} \ell(v) \leq \phi_1(\ell(u_{i-1})) - \phi_1(\ell(u_i)) + \sum_{v \in V(P_1')} (\delta(v) - 1) \quad \text{for} \quad 2 \leq i \leq m - 1; \quad \text{and}
\]

(iii) if \(P_m = \emptyset \) then \(\sum_{v \in V(P_m')} \ell(v) = 0 \leq \phi_1(\ell(u_{m-1})) + \sum_{v \in V(P_m')} (\delta(v) - 1) \).

Otherwise, \(P_m \neq \emptyset \) which implies

\[
\sum_{v \in V(P_m')} \ell(v) \leq \phi_1(\ell(u_{m-1})) + \sum_{v \in V(P_m')} (\delta(v) - 1) \quad \leq \phi_1(\ell(u_{m-1})) + \sum_{v \in V(P_m')} (\delta(v) - 1).
\]

By combining (i), (ii) and (iii), we have

\[
\sum_{v \in S_0} \ell(v) = \sum_{i=0}^{m} \sum_{v \in V(P_i')} \ell(v) \leq \sum_{i=1}^{m} \sum_{v \in V(P_i')} (\delta(v) - 1).
\]

Since \(\bigcup_{i=1}^{m} V(P_i') = V(P) - S_0 \) and \(\delta(P) = \sum_{v \in V(P) - S_0} \delta(v) \), we obtain
\[
\sum_{v \in S_0} \ell(v) \leq \sum_{v \in V(P)-S_0} (\delta(v) - 1) = \sum_{v \in V(P)-S_0} \delta(v) - (|V(P)| - |S_0|)
\]
\[
= \delta(P) - |V(P)| + |S_0|.
\]
By a similar argument as above, we also have \(\sum_{v \in S_0} r(v) \leq \delta(P) - |V(P)| + |S_0|\).
Hence,
\[
\sum_{v \in S_0} \delta(P, v) = \sum_{v \in S_0} \ell(v) + \sum_{v \in S_0} r(v) \leq 2(\delta(P) - |V(P)| + |S_0|).
\] (7)
By combining (1) and (7), we have
\[
2|S_0| - |S_1| \leq \sum_{v \in S_0} \delta(P, v) \leq 2(\delta(P) - |V(P)| + |S_0|),
\]
and the proof is complete.

In order to determine \(f'_{\alpha}(P)\), we also need the following notions. A subpath \(Q\) of \(P\) is said to be 1-maximal with respect to \(\alpha\), if \(Q\) is a maximal connected subgraph of \(P\) such that for each \(v \in V(Q)\), \(\alpha(v) = 1\) and for each vertex \(u\) which is adjacent to \(v\), \(\alpha(u) = 1\); and \(Q\) is 2-maximal with respect to \(\alpha\), if \(Q\) is a maximal connected subgraph of \(P\) such that for each adjacent pair \(u\) and \(w\) in \(V(Q)\), \(\alpha(u) = 1\) implies \(\alpha(w) = 2\) or \(\alpha(u) = \alpha(w) = 2\). For clearness, we give an example in Figure 2.

\[\begin{array}{cccc}
2\text{-maximal} & 1\text{-maximal} & 2\text{-maximal} & 2\text{-maximal} \\
(1 & 2 & 1 & 2) & (1 & 1 & 1 & 1) & (1 & 2 & 1 & 2) & (1 & 2 & 2 & 1)
\end{array}\]

Fig. 2. \(\alpha(P)\).

The following result can be derived from Theorem 1.1.

Lemma 2.4. Let \(Q\) be a 1-maximal subpath of \(P\) with respective to \(\alpha\). Then \(f'_{\alpha}(Q) = |V(Q)| - \left\lfloor \frac{|V(Q)|}{3} \right\rfloor\).

Lemma 2.5. Let \(Q = v_1v_2\cdots v_k, k \geq 3\) be a 2-maximal subpath of \(P\) with respective to \(\alpha\). Then \(f'_{\alpha}(Q) = k - 1\).

Proof. Let \(\delta\) be an optimal \(\alpha\)-weighted pebbling of \(P\). Then by Fact 3, \(v_i \notin S_1\) for \(2 \leq i \leq k - 1\). This implies that \(|S_1| \leq 2\). By Proposition 2.3, we have \(f'_{\alpha}(P) \geq k - 1\). Now, by letting \(\delta\) be the distribution satisfying \(\delta(v_1) = \delta(v_k) = 0, \delta(v_2) = 2\) and \(\delta(v_i) = 1\) for \(3 \leq i \leq k - 1\), we have \(f'_{\alpha}(P) \leq k - 1\). This concludes the proof.
Lemma 2.6. Let $P = v_1v_2 \cdots v_n$ and $Q = v_iv_{i+1} \cdots v_{i+k+1}$ be a subpath of P where $2 \leq i < i + k + 1 \leq n - 1$, and let δ be a α-weighted pebbling of P. If $\alpha(v_{i-1}) = \alpha(v_{i+k+2}) = 2$ and $\alpha(v_{i+j}) = 1$ for $j = 0, 2, \cdots, k + 1$, then $|V(Q) \cap S_1| \leq 2[\frac{k}{3}] + 2$.

Proof. Let $S_2 = \{v \in V(Q) | \delta(P, v) \geq 2\}$ and $|S_2| = x$. By the hypothesis and Fact 3, we conclude that

$$\text{if } v_{i+1} \in S_2 \text{ then } v_i \notin S_1 \text{ and if } v_{i+k} \in S_2 \text{ then } v_{i+k+1} \notin S_1. \quad (A)$$

By Fact 3, each vertex v in $(V(Q) \setminus \{v_i, v_{i+k+1}\}) \cap S_1$ is adjacent to exactly one vertex in S_2. Also, since Q is a subpath, each vertex in S_2 is adjacent to at most two vertices in $(V(Q) \setminus \{v_i, v_{i+k+1}\}) \cap S_1$. Hence, we have $|V(Q) \cap S_1| \leq 2x + 2$. This implies

$$x \geq \frac{|V(Q) \cap S_1|}{2} - 1. \quad (B)$$

Since $V(Q) \cap S_1 \subseteq V(Q) - S_2$, we have

$$|V(Q) \cap S_1| \leq |V(Q)| - |S_2| = |V(Q)| - x \leq k + 3 - |V(Q) \cap S_1|/2.$$

It follows that $|V(Q) \cap S_1| \leq \frac{2k}{3} + 2$. Let $k = 3t + r$ and $0 \leq r \leq 2$. Then $t = \lfloor \frac{k}{3} \rfloor$.

Case 1. $r = 0$ or 1. We have $|V(Q) \cap S_1| \leq 2t + \left\lceil \frac{2r}{3} \right\rceil + 2 = 2t + 2 = 2\lfloor \frac{k}{3} \rfloor + 2$.

Case 2. $r = 2$. We have $|V(Q) \cap S_1| \leq 2t + \left\lceil \frac{2r}{3} \right\rceil + 2 = 2t + 3$. Suppose that $|V(Q) \cap S_1| = 2t + 3$. Then $x \leq |V(Q)| - |V(Q) \cap S_1| = (3t + 2 + 2) - (2t + 3) = t + 1$. But, we have $x \geq (2t + 3)/2 - 1 = t + 1/2$ by (B) and thus $x = t + 1$. This implies that $|S_2| + |V(Q) \cap S_1| = 3t + 4 = 2k = |V(Q)|$. Therefore, for each $v \in V(Q)$, either $v \in S_1$ or $v \in S_2$. By (A), Fact 3 and the hypothesis, if $v_{i+j} \in S_2$ and $v_{i+j+1} \in S_1$ then $v_{i+j+2} \in S_1$, and if $v_{i+j} \in S_1$ and $v_{i+j+1} \in S_1$ then $v_{i+j+2} \in S_2$ for $0 \leq j \leq k - 1$. This implies that $|V(Q) \cap S_1|$ is even. It is a contradiction to our assumption. Therefore, we have $|V(Q) \cap S_1| \leq 2t + 2 = 2\lfloor \frac{k}{3} \rfloor + 2$.

Now, we are ready for the main theorem.

Theorem 2.7. Let T be a caterpillar with P a body of T and $|V(P)| = n \geq 3$. Let $\alpha(v) = 2$ if v is a joint of T and $\alpha(v) = 1$ otherwise. Let P'_1, P'_2, \cdots, P'_m be 2-maximal subpaths of P with respect to α and P_i be a subpath between P'_i and P'_{i+1} for $i = 1, 2, \cdots, m - 1$. Then $f'(T) = n - m - \sum_{i=1}^{m-1} \left\lceil \frac{|V(P_i)|}{3} \right\rceil$.

Therefore, we obtain
\[
\text{Hence, we have}
\]
\[
1 \leq \sum_{i=1}^{m-1} \left\lfloor \frac{|V(P_i)|}{3} \right\rfloor.
\]

By Lemma 2.4 and Lemma 2.5, it is easy to see
\[
\text{with respect to each } P_i \text{ and } u_i \text{ respectively. Note that } w_i \text{ is an empty graph or a 1-maximal subpath of } P_i \text{ with respect to } \alpha. \text{ If } P_i \text{ is an empty graph then } |V(P_i)| - \left\lfloor \frac{|V(P_i)|}{3} \right\rfloor = 0. \text{ Combining with Lemma 2.4 and Lemma 2.5, it is easy to see}
\]
\[
f'_n(P) \leq \sum_{i=1}^{m} (|V(P_i')| - 1) + \sum_{i=1}^{m-1} \left(|V(P_i)| - \left\lfloor \frac{|V(P_i)|}{3} \right\rfloor \right)
\]
\[
= \sum_{i=1}^{m} |V(P_i')| + \sum_{i=1}^{m-1} |V(P_i)| - m - \sum_{i=1}^{m-1} \left\lfloor \frac{|V(P_i)|}{3} \right\rfloor
\]
\[
= n - m - \sum_{i=1}^{m-1} \left\lfloor \frac{|V(P_i)|}{3} \right\rfloor.
\]

Therefore, it is left to show that the above upper bound is also a lower bound. By Proposition 2.3, we have
\[
f'_n(P) \geq |V(P)| - \left\lfloor \frac{1}{2} |S_1| \right\rfloor = n - \left\lfloor \frac{1}{2} |S_1| \right\rfloor.
\]

Hence, it suffices to show
\[
|S_1| \leq 2m + \sum_{i=1}^{m-1} \left\lfloor \frac{|V(P_i)|}{3} \right\rfloor.
\]

For \(1 \leq i \leq m\), let \(u_i\) and \(w_i\) be the leftmost vertex and the rightmost vertex of \(P_i\) respectively. Note that \(w_i\) and \(u_{i+1}\) are adjacent to the left end vertex and the right end vertex of \(P_i\) respectively. We denote the subpath induced by \(\{w_i, u_{i+1}\} \cup V(P_i)\) by \(w_i \sim P_i \sim u_{i+1}\). By Fact 3, we have \(V(P_i') - \{u_i, w_i\} \cap S_1 = \emptyset\) for \(1 \leq i \leq m\). This implies that
\[
S_1 = V(P) \cap S_1 = \{u_1, w_m\} \cap S_1 \cup \bigcup_{i=1}^{m-1} [V(w_i \sim P_i \sim u_{i+1}) \cap S_1].
\]

Hence, we have
\[
|S_1| = |\{u_1, w_m\}| + \sum_{i=1}^{m-1} |V(w_i \sim P_i \sim u_{i+1}) \cap S_1|.
\]

By Lemma 2.6, we have
\[
|V(w_i \sim P_i \sim u_{i+1}) \cap S_1| \leq 2 \left\lfloor \frac{|V(P_i)|}{3} \right\rfloor + 2 \text{ for } 1 \leq i \leq m - 1.
\]

Therefore, we obtain
\[
|S_1| \leq 2 + \sum_{i=1}^{m-1} (2 \left\lfloor \frac{|V(P_i)|}{3} \right\rfloor + 2) = 2m + \sum_{i=1}^{m-1} 2 \left\lfloor \frac{|V(P_i)|}{3} \right\rfloor.
\]
This concludes the proof.

Before we finish this paper, we give an example to clarify the idea used in this paper.

Example. Let T be a caterpillar in Figure 3. Here, $n = 25$, $m = 4$, $\sum_{i=1}^{m-1} \left\lfloor \frac{|V(P_i)|}{3} \right\rfloor = 2$ and $f'(T) = 25 - 4 - 2 = 19$.

![Fig. 3. An optimal α-weighted pebbling of P.](image)

ACKNOWLEDGMENT

The authors would like to thank the referees for their helpful comments in revising this paper.

REFERENCES

Chin-Lin Shiue
Department of Applied Mathematics,
Chung Yuan Christian University,
Chung Li,
Taiwan
E-mail: clshiue@math.cycu.edu.tw

Hung-Lin Fu
Department of Applied Mathematics,
National Chiao Thung University,
Hsin Chu,
Taiwan
E-mail: hlfu@math.nctu.edu.tw