On Latin \((nxnx(n-2))\)-Parallelepipeds

HUNG-LIN FU
On Latin \((n \times n \times (n-2))\)-Parallelepipeds

HUNG-LIN FU

(Received March 20, 1985)

1. Introduction

Let \(A_1, A_2, \ldots, A_k\) be pairwise disjoint latin squares of (the same) \(n\) elements. The ordered \(k\)-tuple \(A = (A_1, A_2, \ldots, A_k)\) is called a latin \((n \times n \times k)\)-parallelepiped. In the case \(k = n\), \(A\) is called a latin cube of order \(n\).

In [1], P. Horák shows that, for all \(n = 2^k\), \(k \geq 3\), there exists a latin \((n \times n \times (n-2))\)-parallelepiped that cannot be embedded in any latin cube of order \(n\).

In this paper, generalizing the idea of [1], we prove that for each \(n \geq 12\) there exists a latin \((n \times n \times (n-2))\)-parallelepiped that cannot be embedded in any latin cube of order \(n\). Moreover, we show that a latin \((n \times n \times (n-2))\)-parallelepiped can always be embedded in a latin cube of order \(m\) with \(m \geq 4n\).

2. Main Theorems

We start with the construction of a latin \((6 \times 6 \times 4)\)-parallelepiped which cannot be embedded in a latin cube of order 6. (Figure 2.1).

\[
A_1 = \begin{bmatrix}
1 & 2 & 4 & 3 & 5 & 6 \\
2 & 1 & 3 & 5 & 6 & 4 \\
4 & 3 & 2 & 6 & 1 & 5 \\
3 & 5 & 6 & 1 & 4 & 2 \\
5 & 6 & 1 & 4 & 2 & 3 \\
6 & 4 & 5 & 2 & 3 & 1
\end{bmatrix} \quad A_2 = \begin{bmatrix}
2 & 1 & 5 & 4 & 6 & 3 \\
1 & 3 & 2 & 6 & 4 & 5 \\
6 & 2 & 3 & 1 & 5 & 4 \\
5 & 6 & 4 & 2 & 3 & 1 \\
3 & 4 & 6 & 5 & 1 & 2 \\
4 & 5 & 1 & 3 & 2 & 6
\end{bmatrix}
\]
LEMMA 2.1. \((A_1, A_2, A_3, A_4)\) is a latin \((6 \times 6 \times 4)\)-parallelepiped which cannot be embedded in a latin cube of order 6.

PROOF. Let \(C = [S_{i,j}]\) be the 6x6 array where \(S_{i,j} = \{1, 2, \ldots, 6\} \setminus \{A_1(i, j), A_2(i, j), A_3(i, j), A_4(i, j)\}\), \((A_k(i, j))\) is the \((i, j)\)-entry of the latin square \(A_k\). (Figure 2.2.) In order to embed \((A_1, A_2, A_3, A_4)\) into a latin cube of order 6, we have to find \(A_5\) and \(A_6\) such that \(A_1, A_2, \ldots, A_6\) are pairwise disjoint latin squares. Hence, if \(\{a, b\} = S_{i,j}\) \(\{c, d\} = S_{i',j'}\) and \(i = i'\) or \(j = j'\) (not both), then \(A_k(i, j) = a\) and \(A_k(i', j') = c\) should imply that \(b \neq d\) (\(k = 5\) or 6). We start with the entry \(A_5(1, 2)\). We will use \(\rightarrow A_5(i, j)\) to denote the next entry to be picked. (1) \(A_5(1, 2) = 3 \rightarrow A_5(2, 2) = 4 \rightarrow A_5(3, 2) = 6 \rightarrow A_5(5, 2) = 5 \rightarrow A_5(6, 2) = 2\), but \(A_5(1, 2) = 3 \rightarrow A_5(1, 1) = 4 \rightarrow A_5(1, 3) = 6 \rightarrow A_5(6, 3) = 2\), which is not possible for \(A_5\). Similarly, (2) \(A_5(1, 2) = 4 \rightarrow A_5(4, 2) = 3 \rightarrow A_5(6, 2) = 1 \rightarrow A_5(5, 2) = 2 \rightarrow A_5(3, 2) = 5 \rightarrow A_5(3, 5) = 6 \rightarrow A_5(3, 6) = 2 \rightarrow A_5(3, 3) = 1 \rightarrow A_5(2, 3) = 5 \rightarrow A_5(4, 3) = 3\) which contradicts \(A_5(4, 2) = 3\). Since it is not possible to find \(A_5\), we have the proof.

\[
\begin{array}{cccccc}
4,6 & 3,4 & 2,6 & 2,5 & 1,3 & 1,5 \\
4,6 & 4,6 & 1,5 & 2,3 & 1,5 & 2,3 \\
3,5 & 5,6 & 1,4 & 3,4 & 2,6 & 1,2 \\
1,2 & 1,3 & 3,5 & 4,6 & 2,5 & 4,6 \\
1,2 & 2,5 & 3,4 & 1,6 & 3,4 & 5,6 \\
3,5 & 1,2 & 2,6 & 1,5 & 4,6 & 3,4
\end{array}
\]

Figure 2.2

LEMMA 2.2. A latin cube of order \(n\) can be embedded in a latin cube of order \(m\) for every \(m \geq 2n\).

PROOF. (We note that this lemma has been proved in [2]. We recall it here, since it is in preprint.) Let \(m \geq 2n\). It is well known that a latin square \(A\) of order
n can be embedded in a latin square \(L = [k_{i,j}] \) of order \(m \geq 2n \). Set \(L_t = L \)
and construct \(L_t, t = 2, 3, \ldots, m \), by letting the \((i, j)\)-entry in \(L_t \) be
\[\varphi_{1,1} \varphi_{1,2} \cdots \varphi_{1,m} \]
where \(\alpha_t \) is the permutation
\[\varphi_{t,1} \varphi_{t,2} \cdots \varphi_{t,m} \]. It is easy to see that \((L_1, \)
\(L_2, \ldots, L_m) \) is a latin cube of order \(m \) and contains a latin sub-cube of order \(n \)
generated from \(A \) in the upper-left corners of \((L_1, L_2, \ldots, L_n) \). We can replace
this sub-cube with the original given latin cube of order \(n \). This completes the
proof.

Now we are ready for the main theorem.

THEOREM 2.3. For each \(n \geq 12 \), there exists a latin \((nxnx(n-2))\)-
parallelepiped which cannot be embedded in a latin cube of order \(n \).

PROOF. Let \(n \) be any positive integer \(\geq 12 \). By Lemma 2.2, there exists a
latin cube \(L = (L_1, L_2, \ldots, L_n) \) of order \(n \), which contains a latin cube \(B = (B_1, B_2, \ldots, B_6) \) of order \(6 \), in the upper-left corners of \((L_1, L_2, \ldots, L_n) \). By
replacing \(B_i \) with \(A_i \) of Figure 2.1, \(i = 1, 2, 3, 4 \), it is easy to see \((L_1, L_2, L_3, L_4, L_7, L_8, \ldots, L_n) \) is a latin \((nxnx(n-2))\)-parallelepiped which cannot be
embedded in a latin cube of order \(n \).

LEMMA 2.4. Any latin \((nxnx(n-2))\)-parallelepiped can be embedded in a
latin cube of order \(2n \).

PROOF. Let \(A = (A_1, A_2, \ldots, A_{n-2}) \) be a latin \((nxnx(n-2))\)-parallelepiped
and \(C \) be the nxnx array \([S_{i,j}] \) such that \(S_{i,j} = \{ 1, 2, \ldots, n \} \setminus \{ A_k(i,j) \mid k = 1, 2, \ldots, n-2 \} \). It is not difficult to see \(\{ S_{i,1}, S_{i,2}, \ldots, S_{i,n} \} \) satisfies the Hall's
condition. Hence we can construct an nxnx array \(B_{n-1} = [B_{n-1}(i,j)] \) such that
the \(i \)-th row is an SDR (system of distinct representatives) of \(\{ S_{i,1}, S_{i,2}, \ldots, S_{i,n} \} \). It is a direct result that each row of the nxnx array \(B_n = [B_n(i,j)] \) has
distinct elements where \(B_n(i,j) = S_{i,j} \setminus \{ B_{n-1}(i,j) \} \). Now let \(B'_{n-1} = [B'_{n-1}(i,j)] \)
and \(B'_{n-1}(i,j) = B_{n-1}(i,j) + n \) if there exists \(i' > i \) such that
\(B_{n-1}(i',j) = B_{n-1}(i,j) \), otherwise \(B'_{n-1}(i,j) = B_{n-1}(i,j) \). Similarly we construct
\(B'_n \). Moreover, we let \(A_{n-1} = B'_{n-1} \), and \(A_n(i,j) = B'_n(i,j) + n \) if \(B'_n(i,j) \) occurs
in the \(j \)-th column of \(A_{n-1} = B'_{n-1} \), otherwise \(A_n(i,j) = B'_n(i,j) \). We are ready
to construct a latin cube of order \(2n \) which contains the parallelepiped \((A_1, A_2,
\ldots, A_{n-2}) \). (Figure 2.3.) In the figure, we define \(C_k = [C_k(i,j)] \) as follows:
\(C_k(i,j) = A_k(i,j) + n \), if \(A_k(i,j) \leq n \); \(C_k(i,j) = A_k(i,j) - n \), if \(A_k(i,j) > n \).
It is not difficult to see that L_k is a latin square for each $1 \leq k \leq n-2$, and $n+3 \leq k \leq 2n$. If L_{n-1} is a latin square, so are L_n, L_{n+1}, and L_{n+2}. It suffices to check that L_{n-1} is a latin square of order $2n$. Since, by construction, $L_{n-1}(i, j) \neq L_{n-1}(i', j)$, and $L_{n-1}(i, j) \neq L_{n-1}(i, j')$ for each $i' \neq i$ and $j' \neq j$, we conclude that L_{n-1} is a latin square. $L_k(i, j) \neq L_k(i, j)$ for each $k' \neq k$ is a direct result of the way we defined L_k. Hence $L = (L_1, L_2, \ldots, L_{2n})$ is a latin cube of order $2n$ which contains the parallelepiped $(A_1, A_2, \ldots, A_{n-2})$. This completes the proof.

THEOREM 2.5. Any latin $(n \times n \times (n-2))$-parallelepiped can be embedded in a latin cube of order m for every $m \geq 4n$.

PROOF. By Lemmas 2.2, and 2.4.
References

Department of Mathematics
Auburn University
Auburn, Alabama 36849
U. S. A.

Permanent address:
Department of Mathematics
Tamkang University
Tamsui, Taiwan 251
R. O. C.