Connectivity of Cages

H. L. Fu,1,2
1DEPARTMENT OF APPLIED MATHEMATICS
NATIONAL CHIAO-TUNG UNIVERSITY
HSIN-CHU, TAIWAN
REPUBLIC OF CHINA

K. C. Huang,3
3DEPARTMENT OF APPLIED MATHEMATICS
PROVIDENCE UNIVERSITY, SHALU,
TAICHUNG HSIENT, TAIWAN
REPUBLIC OF CHINA

C. A. Rodger2,*
2DEPARTMENT OF DISCRETE AND STATISTICAL SCIENCES
120 MATH ANNEX
AUBURN UNIVERSITY,
ALABAMA USA 36849-5307

ABSTRACT

A (k; g)-graph is a k-regular graph with girth g. Let f(k; g) be the smallest integer ν such there exists a (k; g)-graph with ν vertices. A (k; g)-cage is a (k; g)-graph with f(k; g) vertices. In this paper we prove that the cages are monotonic in that f(k; g1) < f(k; g2) for all k ≥ 3 and 3 ≤ g1 < g2. We use this to prove that (k; g)-cages are 2-connected, and if k = 3 then their connectivity is k. © 1997 John Wiley & Sons, Inc.

1. INTRODUCTION

All graphs in this note are simple. The length of a shortest odd or even cycle in a graph G is called the odd girth or the even girth of G, respectively. Throughout this paper let g = g(G) denote the smaller of the odd and even girths of G (so g is the girth of G), and let h = h(G) denote the larger; then the girth pair of G is defined to be (g, h). A k-regular graph with girth pair (g, h) is called a (k; g, h)-graph. For any k ≥ 1 and any g ≡ h (mod 2) with 3 ≤ g < h, let f(k; g, h)

*This research is supported by ONR Grant N000014-95-0769.

c © 1997 John Wiley & Sons, Inc.

CCC 0364-9024/97/020187-05
denote the smallest integer ν such that there exists a $(k; g, h)$-graph with ν vertices. Similarly, a k-regular graph with girth g is called a $(k; g)$-graph, and let $f(k; g)$ denote the smallest integer ν such that there exists a $(k; g)$-graph with ν vertices; a $(k; g)$-graph with $f(k; g)$ vertices is called a cage. Cages have been studied widely since introduced by Tutte in 1947 [3]; see [4] for a survey referring to 70 publications.

Several interesting questions concerning girth pairs of graphs remain open. For example, it is clear that $f(k; g) \leq f(k; g, h)$, and this inequality may be strict; for example, the $(k; 4)$-cage is K_{2k} [4], so contains no 5-cycles, so in this case $f(k; 4) < f(k; 4, 5)$. Related to this observation is a conjecture of Harary and Kovacs [2] who believe that if g is odd then $f(k; g) = f(k; g, g+1)$. But whether $f(k; g, h) \leq f(k; h)$ remains unknown. Harary and Kovacs proved [2] that $f(k; h - 1, h) \leq f(k; h)$. They also conjectured that all $(k; g, h)$-graphs of order $f(k; g, h)$ are 2-connected. In this paper we prove the related conjecture that cages are 2-connected. Our proofs rely on knowing that cages are monotonic in the sense that $f(k; g_1) < f(k; g_2)$ for all $g_1 < g_2$. While this may be known to some, we can find no reference to the result, so a proof is included here. For any undefined terminology, see [1].

2. MONOTONICITY AND CONNECTIVITY OF CAGES

There have been many papers that find bounds on $f(k; g)$ (see [4] for a survey). We begin by considering $f(k; g)$, proving that cages are monotonic, a result that will also be of use in considering the connectivity of cages.

Theorem 1. For all $k \geq 3$ and $3 \leq g_1 < g_2$, $f(k; g_1) < f(k; g_2)$.

Proof. It suffices to show that if $k, g \geq 3$ then $f(k; g) < f(k; g + 1)$. So let G be a $(k; g + 1)$-graph with $f(k; g + 1)$ vertices.

Suppose k is even. Let C be a cycle of length $g + 1$ in G containing the edges uv_1 and uv_2. Let $N_G(u) = \{v_1, \ldots, v_k\}$ be the neighborhood of u in G, and let $E' = \{v_1v_2, v_3v_4, \ldots, v_{k-1}v_k\}$. Let G' be the component of $G - u + E'$ that contains v_1. Since $g + 1 \geq 4$, $N_G(u)$ is an independent set of G, so $E' \cap E(G) = \emptyset$, and so G' is a simple graph. Clearly G' contains the cycle $(C - u) + v_1v_2$ of length g. Also, if C' is a cycle in G' then: if $E' \cap E(C') = \emptyset$ then C' is a cycle in G; and if $E' \cap E(C') \neq \emptyset$ then let P be a (v_1, v_1)-path that is a subgraph of C' with $E(P) \cap E' = \emptyset$, so $P + \{uv_1, w_1\}$ is a cycle in G, so C' has length at least g (since C' contains P and at least one edge in E'). So G' has no cycles of length less than g, and is therefore a $(k; g)$-graph with at most $f(k; g + 1) - 1$ vertices, so $f(k; g) < f(k; g + 1)$.

Suppose k is odd. Let C be a cycle of length $g + 1$ in G containing uv_1 and uv_2. Let $N_G(u) = \{v_1, \ldots, v_{k-1}, w\}$. Clearly $w \notin V(C)$, for if C is the cycle $(u, v_2, \ldots, x_1, w, x_2, \ldots, v_1)$ then (u, v_2, \ldots, x_1, w) is a cycle of length less than the girth of G. Let $N_G(u) = \{x_1, \ldots, x_{k-1}, u\}$. Let G' be the component of $(G - \{u, w\}) + \{v_{2i-1}v_{2i}, x_{2i-1}x_{2i} | 1 \leq i \leq (k-1)/2\}$ that contains v_1. Since $g + 1 \geq 4$, $N_G(u)$ and $N_G(w)$ are independent sets of G, so G' is simple. Clearly $C - u + v_1v_2$ is a cycle in G' of length g, and (as in the previous case) no cycle in G' has length less than g. Therefore G' is a $(k; g)$-graph with at most $f(k; g + 1) - 2$ vertices, so $f(k; g) < f(k; g + 1)$.

We can now use Theorem 1 to prove the following result.

Theorem 2. All $(k; g)$-cages are 2-connected.
Prove. Suppose that \(G \) is a connected \((k, g)\)-graph that contains a cut vertex \(u \). Let \(C_1, \ldots, C_w \) be the components of \(G - u \), with \(|V(C_i)| \leq |V(C_j)| \) for \(1 \leq i < j \leq w \). Clearly
\[
d_{C_1}(v_1, v_2) \geq g - 2 \quad \text{for all } v_1, v_2 \in V(C_1) \cap N_G(u).
\]
Let \(C' \) be a copy of \(C_1 \) with \(V(C') \cap V(C_1) = \emptyset \), and let \(f \) be an isomorphism between \(C_1 \) and \(C' \). Form a new graph from the union of \(C_1 \) and \(C' \) by joining each \(v \in V(C_1) \cap N_G(u) \) to \(f(v) \) with an edge.

Clearly \(H \) is \(k \)-regular, and has fewer vertices than \(G \) (since \(|V(C')| \leq |V(C_2)| \) and \(u \not\in V(H) \)). Also, by (1), any cycle in \(H \) containing an edge \(v f(v) \) has length at least \(2(g - 2) + 2 = 2g - 2 \), so \(H \) has girth at least \(\min\{g, 2g - 2\} = g \). Therefore by Theorem 1, \(G \) is not a \((k, g)\)-cage, and the result follows.

3. FURTHER RESULTS

While it is good to know that cages are 2-connected, we believe that their connectivity is much higher. Indeed, we are bold enough to make the following conjecture.

Conjecture. All simple \((k, g)\)-cages are \(k \)-connected.

In support of this conjecture, we now prove the following result.

Theorem 3. All cubic cages are 3-connected.

Prove. Suppose \(G' \) is a \((3, g)\)-cage. By Theorem 2, \(G' \) has connectivity at least 2. Suppose \(G' \) has connectivity 2. The following construction of a graph \(G \) is depicted in Figure 1.

Since \(G' \) is a cubic cage, \(G' \) has an edge-cut consisting of two edges, say \(e \) and \(f \). Let \(H' \) and \(W' \) be the two components of \(G' - \{e, f\} \), let \(e = x_0y_0 \) and \(f = x_1y_1 \), where \(\{x_0, x_1\} \subseteq H' \) and \(\{y_0, y_1\} \subseteq W' \). Let \(d_{W'}(y_0, y_1) = d' \leq d_{H'}(x_0, x_1) = D \). Let \(P = (w_0 = y_0, w_1, w_2, \ldots, w_d = y_1) \) be a shortest \((y_0, y_1)\)-path in \(W' \), let \(Q' = (h_0 = x_0, h_1, h_2, \ldots, h_D = x_1) \) be a shortest \((x_0, x_1)\)-path in \(H' \) and let \(Q = (h_0, h_1, \ldots, h_{d-1}) \) be the \((x_0, h_{d-1})\)-subpath of \(Q' \). For each \(i \in \{0, 1\} \) let \(z_i \) be the unique neighbor of \(y_i \) in \(W' \) that is not in \(P \). Let \(R \) be the path \((z_0, x_0, w_1, h_1, w_2, h_2, \ldots, w_{d-1}, h_{d-1}) \). Let \(H = H' - E(Q) \) and let \(L = (W' - E(P)) - \{y_0, y_1\} \). Let \(G = (H \cup W \cup R) + \{x_1z_1\} \) (see Fig. 1).

Clearly \(G \) is a cubic graph with \(|V(G')| - 2\) vertices. We now show that \(G \) has girth at least \(g \), so the result will then follow from Theorem 1 which will contradict \(G' \) being a \((3, g)\)-cage.

Any cycle in \(G \) that is also in \(G' \) clearly has length at least \(g \). Any cycle in \(G \) that is not in \(G' \) contains at least two edges in \(E(R) \cup \{x_1z_1\} \); let \(C \) be a cycle containing exactly two such edges, say \(c_1 \) and \(c_2 \). We consider several cases.

Case 1. Suppose \(c_1 = x_0z_0 \) and \(c_2 = h_{i-1}w_i \) or \(h_iw_i \) with \(1 \leq i \leq d - 1 \).

Let \(P_1 \) be a shortest \((z_0, w_i)\)-path in \(W \). Then \(P_1 \) is a path in \(W' \). Let \(P_2 \) be the \((y_0, w_i)\)-subpath of \(P \); so \(P_2 \) has length \(i \). Then clearly \((P_1 \cup P_2) + y_0z_0 \) contains a cycle of length at most \(i + 1 + d_{W}(z_0, w_i) \). Since \((P_1 \cup P_2) + y_0z_0 \) is a subgraph of \(G' \), \(i + 1 + d_{W}(z_0, w_i) \geq g \). For each \(i \in \{i - 1, i\} \), \(d_{H}(x_0, h_i) \geq d_{H}(x_0, h_i) = i - 1 \), so \(C \) has length at least \(d_{H}(x_0, h_l) + d_{W}(z_0, w_i) + 2 \geq i - 1 + g - (i + 1) + 2 = g \).

Case 2. Suppose \(c_1 = x_0z_0 \) and \(c_2 = x_1z_1 \).

Let \(P_1 \) be a shortest \((z_0, z_1)\)-path in \(W \). Then \((P_1 \cup P) + \{y_0z_0, y_1z_1\} \) contains a cycle, and this cycle has length at most \(d + 2 + d_{W}(z_0, z_1) \). Since this cycle is also a subgraph of
$G', d + 2 + d_W(z_0, z_1) \geq g$. Clearly $d_H(x_0, x_1) \geq d_H'(x_0, x_1) = D$. Therefore C has length at least $d_H(x_0, x_1) + d_W(z_0, z_1) + 2 \geq D + g - (d + 2) + 2 \geq g$.

Case 3. Suppose $e_1 = h_{i-1}w_i$ or h_iw_i and $e_2 = h_{j-1}w_j$ or h_jw_j, with $1 \leq i \leq j \leq d - 1$.

If $i = j$ then we can assume $e_1 = h_{i-1}w_i$ and $e_2 = h_iw_i$, so $C - \{e_1, e_2\} + h_{i-1}h_i$ is a cycle in G', and so has length at least g. Therefore C has length at least $g + 1$.

If $i < j$ then let P_1 be a shortest (w_i, w_j)-path in W. Since $P_1 + \{w_lw_{l+1}|i \leq l < j\}$ contains a cycle in G', P_1 has length at least $g - (j - i)$. Also, for each $l_1 \in \{i - 1, i\}$ and each $l_2 \in \{j - 1, j\}$, $d_H(h_{l_1}, h_{l_2}) \geq d_H'(h_i, h_{j-1}) = j - 1 - i$. So C has length at least $g - (j - i) + (j - 1 - i) + 2 = g + 1$.

Case 4. Suppose $e_1 = h_{i-1}w_i$ or h_iw_i with $1 \leq i \leq d - 1$ and $e_2 = x_1z_1$.

As in the previous case $d_W(w_i, z) \geq g - (d + 1 - i)$, and for each $l \in \{i - 1, i\}$ $d_H(h_l, x_1) \geq d_H'(h_i, x_1) = d - i$. Therefore C has length at least $g - (d + 1 - i) + (d - i) + 2 = g + 1$.

Thus in every case, if C contains exactly two edges in R then C has length at least g. If C contains more than two edges in R then it follows even more easily that C has length at least g, so the result is proved.
ACKNOWLEDGMENTS

The authors wish to thank a referee for the shorter proof of Theorem 2 that appears in this paper.

References

Received October 18, 1995