On the α-labeling Number of Bipartite Graphs

Saad El-Zanati and Charles Vanden Eynden
4520 Mathematics Department
Illinois State University
Normal, Illinois 61790-4520, U.S.A.

Hung-Lin Fu
Department of Applied Mathematics
National Chiao Tung University
Hsinchu 30050, Taiwan, R.O.C.

Abstract

We show that if G is the vertex-disjoint union of graphs with α-labelings, or if G is a comet, then there exists a graph H with an α-labeling such that H decomposes into two copies of G.

key words. α-labeling number, bipartite, comet, hammock.

1 Introduction

Only graphs without loops and multiple edges will be considered herein. Undefined graph-theoretic terminology can be found in the textbook by Chartrand and Lesniak [1]. If m and n are integers we denote $\{m, m + 1, \ldots , n\}$ by $[m, n]$. Let N denote the set of nonnegative integers. For any graph G we call an injective function $\gamma : V(G) \rightarrow N$ a labeling of G. Rosa [11] called such a function γ on a graph G with q edges a β-labeling if γ is an injection from $V(G)$ into $[0, q]$ such that $\{ |\gamma(u) - \gamma(v)| : \{u, v\} \in E(G) \} = [1, q]$. A β-labeling is now more commonly called a graceful labeling. An α-labeling is a graceful labeling having the additional property that there exists an integer λ such that if $\{u, v\} \in E(G)$, then $\{u, v\} = \{a, b\}$, where $\gamma(a) \leq \lambda < \gamma(b)$. We will call λ the critical value of the α-labeling. Note that if G admits an α-labeling then G is bipartite with parts A and B, where $A = \{u \in V(G) : \gamma(u) \leq \lambda\}$, and $B = \{u \in V(G) : \gamma(u) > \lambda\}$.

Many papers have been devoted to the topic of labelings of graphs (see Gallian [5] for an excellent up-to-date survey). In particular, a conjecture of Ringel [9] and Kotzig that every tree is graceful has received much attention. In spite of many partial results, the conjecture remains open. Not every tree has an \(\alpha \)-labeling [11].

Rosa showed in [11] that \(K_{m,n} \) has an \(\alpha \)-labeling for all positive integers \(m \) and \(n \) and that \(C_m \) has an \(\alpha \)-labeling if and only if \(m \equiv 0 \pmod{4} \).

Let \(K \) and \(G \) be graphs. A \textit{G-decomposition} of \(K \) is a set \(\{G_1, G_2, \ldots, G_t\} \) of subgraphs of \(K \), each of which is isomorphic to \(G \) and such that the edge sets of the graphs \(G_i \) form a partition of the edge set of \(K \). In this case we say \(G \) \textit{divides} \(K \).

Two applications to graph decomposition make \(\alpha \)-labelings particularly attractive. Theorem 1 is proved in Rosa's original article [11]. A proof of Theorem 2 can be found in [3].

Theorem 1 Let \(G \) be a graph with \(q \) edges, and suppose that \(G \) admits an \(\alpha \)-labeling. Then there exists a \(G \)-decomposition of the complete graph \(K_{2q^2+1} \) for every positive integer \(x \).

Theorem 2 Let \(G \) be a graph with \(q \) edges, and suppose that \(G \) admits an \(\alpha \)-labeling. Then there exists a \(G \)-decomposition of the complete bipartite graph \(K_{2q^2+1} \) for all positive integers \(x \) and \(y \).

In [12] Snevily introduced the following terminology. We say a bipartite graph \(G \) with \(e \) edges \textit{eventually has an \(\alpha \)-labeling} provided that there exists a graph \(H \) with an \(\alpha \)-labeling that can be decomposed into \(t \) copies of \(G \). Such a graph \(H \) is called the \textit{host} graph of \(G \). The \textit{\(\alpha \)-labeling number} of \(G \) is \(G_\alpha = \min \{ t : \text{there exists a host graph } H \text{ of } G \text{ with } |E(H)| = t \cdot |E(G)| \} \).

For example it is shown in [4] that the \(n \)-cube \(Q_n \) (the Cartesian product of \(n \) copies of \(K_2 \)) can be decomposed into \(2^{n-1} \) copies of any tree \(T \) with \(n \) edges. Since the \(n \)-cube has an \(\alpha \)-labeling for every positive integer \(n \) (see [7]), we conclude that if \(T \) is a tree with \(n \) edges, then \(T_\alpha \leq 2^{n-1} \).

Snevily showed that if \(C \) is a cycle of even length then \(C_\alpha \leq 2 \), and posed the following conjecture which was recently verified in [2].

Conjecture 1 (Snevily [12]) \textit{If } \(G \) \textit{is a bipartite graph, then } \(G_\alpha < \infty \).

Conjecture 1 was verified by showing that every bipartite graph divides a complete bipartite graph. Recall that \(K_{m,n} \) has an \(\alpha \)-labeling for all positive integers \(m \) and \(n \).

Theorem 3 (El-Zanati, Fu, and Shiue [2]) \textit{For each bipartite graph } \(G \) \textit{with } \(q \) \textit{edges, there exists a } \(q \)-regular bipartite graph \(H \) \textit{such that } \(H \) \textit{can be decomposed into copies of } \(G \).
Theorem 4 (Häggkvist [6]) Let G be an r-regular bipartite graph on $2n$ vertices. Then G divides $K_{r,2n,r,2n}$.

By combining the results in Theorems 3 and 4, Conjecture 1 is verified.

Corollary 5 If G is a bipartite graph, then G_α is finite.

The bound obtained in Corollary 5 may be quite large. In this paper we show that $G_\alpha \leq 2$ for all comets and graphs which the vertex-disjoint union of graphs with α-labelings.

Snevily expects that $T_\alpha \leq n$ if T is a tree with n edges. We believe that n is a reasonable bound for G_α for any bipartite graph G with n edges. In particular we note the results in [6], [8], [10], [13] and [14]. We note however that we know of no example of a bipartite graph G where $G_\alpha > 2$.

2 Main Results

Lemma 1 For $i \in \{1,2\}$ let G_i be a graph with q_i edges having an α-labeling γ_i with critical value λ_i. Suppose that G_1 and G_2 are vertex-disjoint. Form a graph G by identifying the vertex in G_1 with vertex label λ_1 with the vertex in G_2 with vertex label 0. Then G has an α-labeling γ satisfying $\gamma(\gamma_2^{-1}(\lambda_2)) = \lambda$, where λ is the critical value of γ. Moreover, $\gamma(\gamma_2^{-1}(\lambda_2 + 1)) = \lambda + 1$ and $\gamma(\gamma_1^{-1}(q_1)) = q_1 + q_2$.

Proof. It can be readily checked that

$$
\gamma(v) = \begin{cases}
\gamma_1(v) & \text{if } v \in V(G_1) \text{ and } \gamma_1(v) \leq \lambda_1 \\
\gamma_1(v) + q_2 & \text{if } v \in V(G_1) \text{ and } \gamma_1(v) > \lambda_1 \\
\gamma_2(v) + \lambda_1 & \text{if } v \in V(G_2)
\end{cases}
$$

is an α-labeling with the desired properties.

Similarly, a graph G^* with an α-labeling γ^* can be formed from the graphs G_1 and G_2 in Lemma 1 by identifying $\gamma_1^{-1}(\lambda_1 + 1)$ with $\lambda_2^{-1}(q_2)$.

Lemma 2 For $i \in \{1,2\}$ let G_i be a graph with q_i edges having an α-labeling γ_i with critical value λ_i. Suppose that G_1 and G_2 are vertex-disjoint. Form a graph G^* by identifying the vertex in G_1 with vertex label $\lambda_1 + 1$ with the vertex in G_2 with vertex label q_2. Then G^* has an α-labeling γ^* with critical value $\lambda^* = \gamma^*(\gamma_2^{-1}(\lambda_2))$. Moreover, $\gamma^*(\gamma_2^{-1}(\lambda_2 + 1)) = \lambda^* + 1$ and $\gamma^*(\gamma_1^{-1}(q_1)) = q_1 + q_2$.

147
Proof. It can be readily checked that

\[
\gamma^*(v) = \begin{cases}
\gamma_1(v) & \text{if } v \in V(G_1) \text{ and } \gamma_1(v) \leq \lambda_1 \\
\gamma_1(v) + q_2 & \text{if } v \in V(G_1) \text{ and } \gamma_1(v) > \lambda_1 \\
\gamma_2(v) + \lambda_1 + 1 & \text{if } v \in V(G_2)
\end{cases}
\]

is an \(\alpha\)-labeling with the desired properties.

The following theorem is an immediate consequence of the above two lemmas.

Theorem 6 For \(i \in [1, n]\) let \(G_i\) be a graph with \(\alpha\)-labeling \(\gamma_i\) with critical value \(\lambda_i\). Suppose the graphs \(G_i\) are pairwise vertex-disjoint. Form a graph \(G\) by either identifying \(\gamma_i^{-1}(\lambda_i)\) with \(\gamma_{i+1}^{-1}(0)\) or identifying \(\gamma_i^{-1}(1 + \lambda_i)\) with \(\gamma_{i+1}^{-1}(q_{i+1})\), \(1 \leq i \leq n - 1\). Then \(G\) has an \(\alpha\)-labeling.

Theorem 7 For \(i \in [1, n]\) let \(G_i\) be a graph with an \(\alpha\)-labeling. Suppose the graphs \(G_i\) are mutually vertex-disjoint. Let \(G = G_1 \cup G_2 \cup \ldots \cup G_n\). Then \(G_\alpha \leq 2\).

Proof. We will present a proof for \(n = 2\). The idea generalizes for \(n > 2\). For \(i \in \{1, 2\}\) let \(G_i\) be a graph with \(q_i\) edges with the \(\alpha\)-labeling \(\gamma_i\) with critical value \(\lambda_i\), and let \(G_i^*\) be an isomorphic copy of \(G_i\) with the (corresponding) \(\alpha\)-labeling \(\gamma_i^*\). Form a graph \(G'\) by linking the graphs in the sequence \(G_1, G_2, G_1^*, G_2^*\) by identifying the ordered pairs of vertices \((\gamma_1^{-1}(\lambda_1), \gamma_2^{-1}(0)), (\gamma_2^{-1}(\lambda_2 + 1), \gamma_2^*^{-1}(q_2))\), and \((\gamma_2^{-1}(\lambda_2), \gamma_1^*^{-1}(0))\). Since \(G\) is isomorphic to both \(G_1 \cup G_2\) and \(G_1^* \cup G_2^*\), we have \(G\) divides \(G'\) and thus \(G_\alpha \leq 2\).

Note that a graph with \(q\) edges and more than \(q + 1\) vertices cannot have even a \(\beta\)-labeling.

Corollary 8 If every component of a forest \(G\) with more than one component has an \(\alpha\)-labeling, then \(G_\alpha = 2\).

3 Hammocks

Let \(H_{k,m}\) be the graph with vertices \(u, v, x_{ij}, 1 \leq i < m, 1 \leq j \leq k\), and for \(1 \leq j \leq k\) the edges \(\{v, x_{i1}\}, \{x_{ij}, x_{i+1,j}\}, 1 \leq i < m - 1, \text{ and } \{x_{m-1,j}, u\}\). We call such a graph a hammock. Note that \(H_{k,m}\) consists of \(k\) paths with \(m\) edges, joined at their endpoints. (See Figure 1.)

Theorem 9 Let \(k\) and \(n\) be positive integers, where if \(n > 2\), then \(k\) is odd. Then the hammock \(G = H_{k,2n}\) has an \(\alpha\)-labeling such that the label on \(u\) is 0 and the label on \(v\) is the critical value.
Proof. We define a labeling γ of the vertices of G by $\gamma(u) = 0$, $\gamma(v) = kn$, and, for $1 \leq i < 2n, 1 \leq j \leq k$,

$$\gamma(x_{ij}) = \begin{cases}
 k(2n-(i-1)/2) - j + 1 & \text{if } i \text{ is odd} \\
 k(1+i/2) - 2j + 1 & \text{if } i \text{ is even}.
\end{cases}$$

We will show that γ is an α-labeling with $\lambda = kn$. First we show that γ is one-to-one. Notice that γ is one-to-one on the vertices x_{ij} with i odd, since increasing i by 2 decreases $\gamma(x_{ij})$ by k.

If $n \leq 2$ there is at most one even i with $1 \leq i < 2n$ and so γ is one-to-one on the x_{ij} with i even. Otherwise we can assume k is odd. But if $k(1+i/2) - 2j + 1 = k(1+i/2) - 2j + 1$ with i and I even and j and J in $[1,k]$, then k divides $2(j-J)$, and so $j = J$ and $i = I$. Thus γ is one-to-one on the x_{ij} with i even also.

Now if i is odd then $\gamma(x_{ij}) \in [k(2n-(2n-1)/2) - k+1, k(2n-1)] = [kn+1, 2kn]$, while if i is even then $\gamma(x_{ij}) \in [k(1+1) - k+1, k(1+(2n-2)/2) - 2 + 1] = [1, kn-1]$. Thus the values of $\gamma(x_{ij})$ with i odd do not overlap those with i even or with $\gamma(u) = 0$ or $\gamma(v) = kn$.

Now we will show that the edge labels are exactly $[1, 2kn]$. First consider the edges $\{x_{ij}, x_{i-1,j}\}$ with i odd, $3 \leq i \leq 2n-1$. Then

$$\gamma(x_{ij}) - \gamma(x_{i-1,j}) = k(2n-(i-1)/2) - j + 1 - (k(1+(i-1)/2) - 2j + 1) = k(2n-i) + j,$$

giving the set of labels $k\{1, 3, 5, \ldots, 2n-3\} + j$. We also have the edges $\{x_{ij}, x_{i+1,j}\}$ with i odd, $1 \leq i \leq 2n-3$. Then

$$\gamma(x_{ij}) - \gamma(x_{i+1,j}) = k(2n-(i-1)/2) - j + 1 - (k(1+(i+1)/2) - 2j + 1) = k(2n-i-1) + j,$$

giving the labels $k\{2, 4, \ldots, 2n-2\} + j$. Taking these two sets together gives $[k+1, k(2n-1)]$. Finally, the edges $\{u, x_{2n-1,j}\}$ have labels $\gamma(x_{2n-1,j}) - \gamma(u) = k(2n-(2n-2)/2) - j + 1 - kn = k + 1 - j$, giving the set $[1, k]$, while the edges $\{u, x_{1j}\}$ have labels $\gamma(x_{1j}) - \gamma(u) = k(2n) - j + 1 - 0$, giving the set $[k(2n-1) + 1, 2kn]$. Note that the vertices u, v and x_{ij} with i even have labels not exceeding kn, while the other vertices have labels greater than kn. Thus γ is an α-labeling with critical value $\lambda = kn$.

Not all hammocks have α-, or even β-labelings. Indeed Rosa [11] proved that a graph in which the degree of every vertex is even has no β-labeling if its number of edges is congruent to 1 or 2 modulo 4. Thus $H_{k,m}$ has no β-labeling if $k \equiv 2 \pmod{4}$ and m is odd.
4 Comets

Let $S_{k,n}$ be the graph with vertices u and $x_{i,j}$, $1 \leq i \leq n$, $1 \leq j \leq k$, and for $1 \leq j \leq k$ the edges $\{u, x_{1,j}\}$ and $\{x_{i,j}, x_{i+1,j}\}$, $1 \leq i < n$. We call such a graph a comet. The comet $S_{k,n}$ consists of k paths with n edges, joined at an endpoint of each path. Not every comet has an α-labeling. For example, $S_{k,2}$ has no α-labeling if $k > 2$ (see [11]). Nevertheless we can prove the following.

Theorem 10 The α-labeling number of any comet is ≤ 2.

Proof. Notice that the hammock $H_{k,2n}$ can be decomposed into 2 copies of the comet $S_{k,n}$. Thus if k is odd this result follows immediately from Theorem 9.

If k is even we will get the same result by adding two paths of length n to the graph $H_{k-1,2n}$. It is well-known that the path P with n edges and vertices w_0, w_1, \ldots, w_n has an α-labeling γ given by

$$\gamma(w_i) = \begin{cases} \frac{i}{2} & i \text{ even} \\ \frac{n-i+1}{2} & i \text{ odd.} \end{cases}$$

Let the path P^* with vertices $w_0^*, w_1^*, \ldots, w_n^*$ be an isomorphic copy of P and define an α-labeling γ^* on P^* by

$$\gamma^*(w_i^*) = \begin{cases} \gamma(w_i) & n \text{ even} \\ n - \gamma(w_i) & n \text{ odd.} \end{cases}$$
Figure 2: An α-labeling of a graph that decomposes into two copies of $S_{6,3}$

We note that $\gamma(w_0) = 0$, while $\gamma^*(w^*_{n-1}) - \gamma^*(w^*_n) = 1$, so $\gamma^*(w^*_n) = \lambda^*$, the critical value of γ^*.

By Theorem 9 the hammock $H_{k-1,2n}$ has an α-labeling for which the label on u is 0, while the label on v is the critical value. Now we construct a new graph by attaching paths of length n at u and v. Specifically, by Theorem 6 we get a graph with an α-labeling by identifying w^*_n with u, and v with w_0. (See Figure 2.) Clearly this graph can be decomposed into two copies of the comet $S_{k,n}$.

References

